• Title/Summary/Keyword: Lateral pressure

Search Result 909, Processing Time 0.041 seconds

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Static and seismic active lateral earth pressure coefficients for c-ϕ soils

  • Keshavarz, Amin;Pooresmaeil, Zahra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.657-676
    • /
    • 2016
  • In this paper, the active lateral earth pressure is evaluated using the stress characteristics or slip line method. The lateral earth pressure is expressed as the lateral earth pressure coefficients due to the surcharge, the unit weight and cohesion of the backfill soil. Seismic horizontal and vertical pseudo-static coefficients are used to consider the seismic effects. The equilibrium equations along the characteristics lines are solved by the finite difference method. The slope of the ground surface, the wall angle and the adhesion and friction angle of the soil-wall interface are also considered in the analysis. A computer code is provided for the analysis. The code is capable of solving the characteristics network, determining active lateral earth pressure distribution and calculating active lateral earth pressure coefficients. Closed-form solutions are provided for the lateral earth pressure coefficients due to the surcharge and cohesion. The results of this study have a good agreement with other reported results. The effects of the geometry of the retaining wall, the soil and soil-wall interface parameters are evaluated. Non-dimensional graphs are presented for the active lateral earth pressure coefficients.

A Study on the Development of Measuring Equipment for Coefficient of Earth Pressure at Rest (정지토압계수의 측정장치 개발에 관한 연구)

  • Song, Mu-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.159-167
    • /
    • 1999
  • For exisiting $K_0$-oedometer, the lateral wall of the ring is cut thinly to make space and by filling the space with space with water or mercuty to keep the balance to the lateral pressure of a specimen, the pressure of the fluid is checked for the pressure of the specimen. But the devices to keep the balance to the lateral pressure of a specimen are complicated, difficult to manufacture and expensive. As newly developed $K_0$-oedometer is equipped with the load cell which can resist higher pressute than the lateral pressure of the specimen, there is nearly no deformation due to the lateral pressure of the specimen. And the measuting is cheap and easy as there are fewer accessories.

  • PDF

Experimental Study on Lateral Pressure Characteristics of a Formwork for High-Flowable and High-Strength Concrete (고유동 고강도 콘크리트용 거푸집의 측압 특성에 관한 실험적 연구)

  • Ko, Young-Kon;Kim, Cheol-Hwan;Hwang, Jae-Woong;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.130-138
    • /
    • 2015
  • In this study, to examine the application of cast-in-place of high-flowable and high-strength concrete, an experimental study on the lateral pressure of a formwork was preformed. The experiment specimens, which have different casting height and casting speed were prepared. The lateral pressure and the change of temperature from test specimens were obtained. The maximum lateral pressure was shown to lateral pressure of fresh concrete. Immediately after placing, the lateral pressure starts to decrease and, after 12 hours, it showed a stabilization. The decreased tend of the lateral pressure was similar with normal-strength concrete, which appears stabilization after 3~4 hours from casting completion. The more casting speed is fast, the more maximum lateral pressure is high, but pressure reduction with the lapse of time was nearly similar. In addition, it was found that there was no direct relation between the hydration heat and the lateral pressure reduction.

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

The Lateral Earth Pressure on Braced Cut Walls Considering Subsoil Condition in Korea (국내 지반조건을 고려한 흙막이 백제에 작용하는 토압)

  • Chae, Young-Su;Moon, Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.129-138
    • /
    • 1994
  • It is well recognized that accurate analysis of lateral earth pressure is very signficant factor which determines the design amount of braced cut walls and braced systems. Many researchers, Peck, Terzaghi-Peck and so on, make a study about lateral earth pressure to act on the flexible walls. But these studies trouble accurate to multy layered systems like inland areas in Korea. This study is compared with the field messurement data to estimate the earth pressure distributions in multy layered areas and the empirical earth pressure distributions. The conclusions are as follows : At final excavation depth, the lateral earth pressure which messured by field instrument is smaller than the empirical earth pressure. (About 1.85~5.32 times). In the case of considering the soft rock layer to the final excavation depth, the messured earth pressure is safe to be compared with empirical earth pressure. The messured earth pressure distributions are like that the upper soil layer is small the middle soil layer is large, the rock mass layer is very small.

  • PDF

Relation of Concrete Setting Characteristic and Lateral Pressure in Mass Concrete Wall (매스콘크리트 벽체에서 콘크리트 응결 특성과 측압과의 관계)

  • 박찬규;유재현;백승준;정재홍;진용만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.935-938
    • /
    • 2001
  • This paper reports the relation of concrete setting characteristic and lateral pressure in mass concrete wall such as side wall of LNG underground storage tank. In order to estimate the lateral pressure, initial setting time of low heat cement concrete with type of mineral admixture was measured for three concrete mixtures(W/P=41.6%) containing limestone powder, fly ash, and slag powder. As a result, the lateral pressure of the concrete containing limestone powder was the smallest than those of other concretes as well as the initial setting time.

  • PDF

A study on the stability of pile bridge abutment on soft ground undergoing lateral flow (연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구)

  • 오일록;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

An Basic Study on the Lateral Pressure to the Form for Rammed Earth Method (흙다짐공법에서 거푸집측압에 대한 기초적연구)

  • Lee, Jung Je;Kwak, Yoon Keun;Hwang, Hey Zoo;Lee, Jong Kook
    • KIEAE Journal
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The lateral pressure that functions on the form of the rammed earth method occupies an important part in the construction of the form. The following research constructed testing forms of $800mm{\times}1200mm$, that have the wall thickness of 200mm, 300mm, 400mm and 500mm to measure the lateral pressures according to the wall thicknesses. Research showed that compared to the concrete construction lateral pressures, the form results measured 2.3-8.9 times higher, and rather than thickness of the form, the distance between the rammer and mold and assuring time had direct relation to the lateral pressure of the form.