• Title/Summary/Keyword: Lateral loading capacity

Search Result 255, Processing Time 0.021 seconds

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls (잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험)

  • 이용재;한진태;장인성;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.