• Title/Summary/Keyword: Lateral impact load

Search Result 78, Processing Time 0.025 seconds

Bidirectional Lateral Loading of RC Columns with Short Lap Splices (겹침이음 길이가 짧은 RC 기둥의 이방향 횡하중 가력 실험)

  • Lee, Chang Seok;Park, Yi Seul;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Reinforced concrete (RC) buildings built in the 1980s are vulnerable to seismic behavior because they were designed without any consideration of seismic loads. These buildings have widely spaced transverse reinforcements and a short lap splice length of longitudinal reinforcements, which makes them vulnerable to severe damage or even collapse during earthquakes. The purpose of this study is to investigate the impact of bidirectional lateral loads on RC columns with deficient reinforcement details. An experimental test was conducted for two full-scale RC column specimens. The test results of deficient RC columns revealed that bidirectional loading deteriorates the seismic capacity when compared with a column tested unidirectionally. Modeling parameters were extracted from the tested load-displacement response and compared with those proposed in performance-based design standards. The modeling parameters proposed in the standards underestimated the deformation capacity of tested specimens by nearly 50% and overestimated the strength capacity by 15 to 20%.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot (등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과)

  • Lee, Ki-Kwang;Choi, Chi-Sun;Eun, Seon-Deok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour;Sam Esfandiari;Mohammad M. Olapour
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.583-596
    • /
    • 2023
  • The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.

Measurement and Analysis of Physical Environmental Load during Handling and Distribution of Domestic Fruits -Focused on Seongju Korean Melon

  • Jongmin Park;Donghyun Kim;Wontae Seo;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • The proportion of agricultural products handled through the Agricultural Products Processing Center (APC) is also steadily increasing every year, and in the case of Seongju Korean melon, a total of 10 APCs of Nonghyup and farming association corporations are in operation, and the distribution ratio is about 60% based on total production. In this study, Seongju Korean melon was selected as a target to analyze the environment load during carrying (production farm ~ APC) in the production area and the transport environment load during distribution of domestic fruits, and to analyze the environmental load for handling at APC. The vertical average vibration intensity (overall Grms of 1~250 Hz) of truck transport measured at three transport routes from Seongju Korean melon producer ~ APC, Seongju ~ Seoul and Seongju ~ Jeju was about three times larger than that in the lateral direction and 4.5 times larger than that in the longitudinal direction, respectively. The frequency of occurrence of high-amplitude events (G) in the vertical direction compared to the measuring time was deeply related to pavement conditions in the order of unpaved farm-roads, concretepaved farm-roads, and asphalt-paved main-roads, but overall Grms for the entire frequency band is believed to have a greater impact on vehicle traveling speed than road conditions. On the other hand, the difference in the size and direction of the vibration intensity measured by the forklift truck's main-body and the attachment (fork carrier) during handling at Seongju Korean melon APC was clear, and the vibration intensity of the forklift truck's main-body was largely affected by the stiffness of the fork and the mast according to the handling weight. Based on the field-data of the transport environment during domestic distribution measured through this study, it is believed that it is possible to develop a lab-based simulation protocol for appropriate packaging design.

Design and Safety Performance Evaluation of the Riding Three-Wheeled Two-Row Soybean Reaper

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.288-293
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the key factors in designing a three-wheeled two-row soybean reaper (riding type) that is suitable for soybean production, and ensure worker safety by proposing optimal work conditions for the prototype of the designed machine in relation to the slope of the road. Methods: A three-wheeled two-row soybean reaper (riding type) was designed and its prototype was fabricated based on the local soybean-production approach. This approach was considered to be closely related to the prototype-designing of the cutter and the wheel driving system of the reaper. Load distribution on the wheels of the prototype, its minimum turning radius, static lateral overturning angle, tilt angle during driving, and The working and rear overturning (back flip) angle were measured. Based on the gathered information, investigations were conducted regarding optimal work conditions for the prototype. The investigations took into account driving stability and worker safety. Results: The minimum ground clearance of the prototype was 0.5 m. The blade height of the prototype was adjusted such that the cutter was operated in line with the height of the ridges. The load distribution on the prototype's wheels was found to be 1 (front wheel: F): 1.35 (rear-left wheel: RL): 1.43 (rear-right wheel: RR). With the ratio of load distribution between the RL and RR wheels being 1: 1.05, the left-to-right lateral loads were found to be well-balanced. The minimum turning radius of the prototype was 2.0 m. Such a small turning radius was considered to be beneficial for cutting work on small-scale fields. The sliding of the prototype started at $25^{\circ}$, and its lateral overturning started at $39.3^{\circ}$. Further, the critical slope angle for the worker to drive the prototype in the direction of the contour line on an incline was found to be $12.8^{\circ}$, and the safe angle of slope for the cutting was measured to be less than $6^{\circ}$. The critical angle of slope that allowed for work was found to be $10^{\circ}$, at which point the prototype would overturn backward when given impact forces of 1,060 N on its front wheel. Conclusions: It was determined that farmers using the prototype would be able to work safely in most soybean production areas, provided that they complied with safe working conditions during driving and cutting.

Numerical Simulations of the Normal Perforation Behavior by Penetrator without AOA into Steel Reinforced Concrete Targets (철근강화콘크리트에 대한 받음각이 없는 관통자의 수직관통거동 전산해석)

  • Yun, Kyung Jae;Yoo, Yoo-Han;Kim, Hak Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.398-404
    • /
    • 2013
  • The simulation of the ballistic trajectory of penetrator into the spaced multi-layer RC targets is very important to predict the hitting condition in subsequent target. Because of perturbation by lateral load of penetrator caused by asymmetric hitting position between penetrator and steel bar reinforcement, penetrator rotates and deviates from the straight path. Therefore, penetration capability of penetrator is decreased in the subsequent targets. This paper presents the result of the penetration of steel-bar-reinforced concrete target by using the explicit finite element code LS-DYNA. A series of computations is performed and compared to experimental data and the computed results are in good agreement with the experimental results over a wide range of velocities. And then we conduct the simulation according to various RC target hitting condition and impact velocities.

Guide plates on wind uplift of a solar collector model

  • Chung, K.M.;Chang, K.C.;Chen, C.K.;Chou, C.C.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2013
  • One of the key issues affecting the promotion of solar water heaters in Taiwan is the severe impact of typhoon each year. An experimental study was conducted to investigate the wind uplift characteristic of a solar collector model with and without a guide plate. The guide plate with different lengths and orientations with respect to wind direction was adopted. It is found that the wind uplift of a solar collector is associated with the tilt angle of the flat panel as expected. A cavity formed between the guide plate and the flat panel has a significant effect on the distributions of streamwsie and lateral pressure. Reduction in uplift is essentially coupled with the projected area of a guide plate on the lower surface of the tilt flat panel.

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.