Acknowledgement
The authors also highly appreciate the anonymous reviewers' valuable comments and constructive suggestions, which improved this paper greatly.
References
- ABAQUS/CAE (2016), Analysis user's guide manual, Simulia: Providence, RI, USA.
- Ai, Z., Li, Z. and Wang, L. (2016), "Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space", J. Sound Vib., 385, 171-183. https://doi.org/10.1016/j.jsv.2016.09.016.
- Al-Omari, R.R., Fattah, M.Y. and Kallawi, A.M. (2019), "Laboratory study on load carrying capacity of pile group in unsaturated clay", Arab J. Sci. Eng., 44, 4613-4627. https://doi.org/10.1007/s13369-018-3483-9.
- Anoyatis, G. and Lemnitzer, A. (2017), "Dynamic pile impedances for laterally-loaded piles using improved Tajimi and Winkler formulations", Soil Dyn. Earthq. Eng., 92, 279-297. https://doi.org/10.1016/j.soildyn.2016.09.020.
- Anoyatis, G., Mylonakis, G. and Lemnitzer, A. (2016), "Soil resistance to lateral harmonic pile motion", Soil Dyn. Earthq. Eng., 87, 164-179. https://doi.org/10.1016/j.soildyn.2016.05.004.
- API RP 2A-WSD (2014), Recommended practice for planning, designing and constructing fixed offshore platforms-Working stress design. American Petroleum Institute; 200 Massachusetts Avenue, Northwest Suite 1100, Washington, DC 20001 USA.
- Arshad, M. and O'Kelly, B.C. (2016), "Analysis and design of monopole foundations for offshore wind-turbine structures", Mar. Georesour. Geotec., 34(6), 503-525. https://doi.org/10.1080/1064119X.2015.1033070.
- ASCE/SEI 7-22 (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers (ASCE); Reston, Virginia, United States.
- Barari, A., Zeng, X., Rezania, M. and Ibsen, L.B. (2021), "Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions", Geomech. Eng., 26(2),175-190. https://doi.org/10.12989/gae.2021.26.2.175.
- Basack, S. and Nimbalkar, S. (2018), "Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading", Int. J. Geomech., 18(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0001188.
- Bhowmik, D., Baidya, D.K. and Dasgupta, S.P. (2013), "A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading", Soil Dyn. Earthq. Eng., 53, 119-129. https://doi.org/10.1016/j.soildyn.2013.06.011.
- Biswas, S. and Manna, B. (2014), "Nonlinear response of full-scale pile under machine-induced coupled vibrations", GeoCongress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Atlanta, US, February.
- Cao, M. and Zhou, A. (2020), "Fictitious pile method for fixed-head pile groups subjected to horizontal loading", Soils Found., 60(1), 63-76. https://doi.org/10.1016/j.sandf.2020.01.005.
- Catal, H.H. (2006), "Free vibration of semi-rigid connected and partially embedded piles with the effects of the bending moment, axial and shear force engineering structures", Eng. Struct., 28(14), 1911-1918. https://doi.org/10.1016/j.engstruct.2006.03.018.
- Cetin, D. and Simsek, M. (2011), "Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium", Struct. Eng. Mech., 40(4), 583-594. https://doi.org/10.12989/sem.2011.40.4.583.
- Chandrasekaran, S.S., Boominathan, A. and Dodagoudar, G.R. (2010), "Experimental Investigations on the behaviour of Pile groups in clay under lateral cyclic loading", Geotech. Geol. Eng., 28(5), 603-617. https://doi.org/10.1007/s10706-010-9318-4.
- Chiou, J.S., Xu, Z.W., Tsai, C.C. and Hwang, J.H. (2018), "Lateral cyclic response of an aluminum model pile in sand", Mar. Georesour. Geotec., 36(5), 554-563. https://doi.org/10.1080/1064119X.2017.1351504.
- Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.
- Choudhary, S.S., Biswas, S. and Manna, B. (2016), "Dynamic coupled response of 6-pile groups with different pile arrangements", Japanese Geotech. Society Special Publication, 2(38), 1389-1392. https://doi.org/10.3208/jgssp.IND-15.
- Chung, S.H. and Yang, S.R. (2017), "Numerical analysis of small-scale model pile in unsaturated clayey soil", Int J Civ Eng, 15(6), 877-886. https://doi.org/10.1007/s40999-016-0065-7.
- Ding, Z., Song, C., Chen, L. and Shi, K. (2020), "Dynamic analysis of laterally loaded single piles in sandy soils considering sliding and debonding on the pile-soil interface", Ocean Eng., 217, 107720. https://doi.org/10.1016/j.oceaneng.2020.107720.
- Ding, X., Luan, L., Zheng, C. and Zhu, W. (2017), "Influence of the second-order effect of axial load on lateral dynamic response of a pipe pile in saturated soil layer", Soil Dyn. Earthq. Eng., 103, 86-94. https://doi.org/10.1016/j.soildyn.2017.09.007.
- Dobry, R. and Gazetas, G. (1988), "Simple method for dynamic stiffness and damping of floating pile groups", Geotechnique, 38(4), 557-574. https://doi.org/10.1680/geot.1988.38.4.557.
- El-Marsafawi, H., Han, Y. and Novak, M. (1992), "Dynamic experiments on two pile groups", J. Geotech. Eng., 118(4), 576-592. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:4(576).
- Fattah, M.Y., Karim, H.H. and Al-Recaby, M.K.M. (2021a), "Investigation of the end bearing in pile group model in dry soil under horizontal excitation", Acta Geotechnica Slovenica, 1, 79-106. https://doi.org/10.18690/actageotechslov.18.1.79-106.2021.
- Fattah M.Y., Karim H.H. and Al-Recaby M.K.M. (2021b), "Vertical and horizontal displacement of model piles in dry soil with horizontal excitation", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 174(4), 239-258. https://doi.org/10.1680/jstbu.18.00207.
- Fattah, M.Y., Karim, H.H. and Al-Recaby, M.K.M., (2016), "Dynamic Behavior of Pile Group Model in Two - Layer Sandy Soil Subjected to Lateral Earthquake Excitation", Global J. Eng. Sci. Res. Management, 3(8), 57-80.
- Fayyazi, M.S., Taiebat, M. and Finn, W.D.L. (2014), "Group reduction factors for analysis of laterally loaded pile groups", Can. Geotech., J., 51(7), 758-769. https://doi.org/10.1139/cgj-2013-0202.
- Gerolymos, N., Escoffier, S., Gazetas, G. and Garnier, J. (2009), "Numerical modeling of centrifuge cyclic lateral pile load experiments", Earthq. Eng. Eng. Vib., 8(1), 61-76. https://doi.org/10.1007/s11803-009-9005-8
- Ghayoomi, M., Ghadirianniari, S., Khosravi, A. and Mirshekari, M. (2018), "Seismic behavior of pile-supported systems in unsaturated sand", Soil Dyn. Earthq. Eng., 112, 162-173. https://doi.org/10.1016/j.soildyn.2018.05.014.
- Hong, Y., He, B., Wang, L.Z., Wang, Z., Ng, C. W.W. and Masin, D. (2017), "Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: Centrifuge tests and numerical modelling" Can. Geotech. J., 54(6), 806-824. https://doi.org/10.1139/cgj-2016-0356.
- Huang, M., Liu, L., Shi, Z. and Li, S. (2021), "Modeling of laterally cyclic loaded monopile foundation by anisotropic undrained clay model", Ocean Eng., 228, Art.108915. https://doi.org/10.1016/j.oceaneng.2021.108915.
- Jiang, Z. and Ashlock, J.C. (2020), "Computational simulation of three-dimensional dynamic soil-pile group interaction in layered soils using disturbed-zone model", Soil Dyn. Earthq. Eng., 130, 105928. https://doi.org/10.1016/j.soildyn.2019.105928.
- Kahribt, M.A. and Abbas, J.M. (2018), "Lateral response of a single pile under combined axial and lateral cyclic loading in sandy soil", Civil Eng. J., 4(9), 1996-2010. https://doi.org/10.28991/cej-03091133.
- Kaynia, A.M. and Kausel, F. (1982), "Dynamic behavior of pile groups", Proceedings of the 2nd International Conference on Numerical Methods in Offshore Piling, 1982. Austin, Texas.
- Kaynia, A.M. and Kausel, E. (1991), "Dynamics of piles and pile groups in layered soil media", Soil Dyn. Earthq. Eng., 10(8), 386-401. https://doi.org/10.1016/0267-7261(91)90053-3.
- Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
- Kong, D., Zhu, J., Long, Y., Zhu, B., Yang, Q., Gao, Y. and Chen, Y. (2021), "Centrifuge modelling on monotonic and cyclic lateral behaviour of monopiles in kaolin clay", Geotechnique, 72(3),1-14. https://doi.org/10.1680/jgeot.19.P.402
- Ladhane, K.B. and Sawant, V.A. (2016), "Effect of pile group configurations on nonlinear dynamic response", Int. J. Geomech., 16(1). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000476.
- Liang, R., Yuan, Y., Fu, D. and Liu, R. (2021), "Cyclic response of monopile-supported offshore wind turbines under wind and wave loading in sand", Mar. Georesour. Geotec., 39(10), 1230-1243. https://doi.org/10.1080/1064119X.2020.1821848.
- Liao, W., Wu, J., Wang, Z., Yan K. and Ouyang, F. (2021), "Experimental investigation of monopile in overconsolidated marine clay subjected to multiple cyclic lateral loading events", Mar. Georesour. Geotec., 40(8), 953-966. https://doi.org/10.1080/1064119X.2021.1958034.
- Luan, L., Ding, X., Zheng, C., Kouretzis, G. and Wu, Q. (2019b), "Dynamic response of pile groups subjected to horizontal loads", Can Geotech J., 57(4), 469-481. https://doi.org/10.1139/cgj-2019-0031.
- Luan, L., Zheng, C. and Kouretzis, G.P. (2019a), "Simplified three-dimensional analysis of horizontally vibrating floating and fixed-end pile groups", Int J Numer Anal Method. GeoMech., 43(16), 2585-2596. https://doi.org/10.1002/nag.2997.
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Division, 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144.
- Manna, B. and Baidya, D. (2010), "Nonlinear dynamic response of piles under horizontal excitation", J. Geotech. Geoenviron. Eng., 136(12), 1600-1609. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000388.14.
- Maeso, O., Aznarez, J.J. and Garcia, F. (2005), "Dynamic impedances of piles and groups of piles in saturated soils", Comput. Struct., 83(10-11), 769-782. https://doi.org/10.1016/j.compstruc.2004.10.015.
- Nogami, T., Otani, J., Konagai, K. and Chen, H.L. (1992), "Nonlinear soil-pile interaction model for dynamic lateral motion", J. Geotech. Eng., 118(1), 89-106. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(89).
- Novak, M. and El-Sharnouby, B. (1984), "Evaluation of dynamic experiments on pile group", J. Geotech. Eng., 110(6), 738-756. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(738).
- Park, D. and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", J. Earthq. Eng., 8(2), 249-274. https://doi.org/10.1080/13632460409350489.
- Peric, D. and Owen, D. (1992), "Computational model for 3-D contact problems with friction based on the penalty method", Int. J. Numer. Method. Eng., 35(6), 1289-1309. https://doi.org/10.1002/nme.1620350609.
- Poorjafar, A., Esmaeili-Falak, M. and Katebi, H., (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-15. https//doi.org/10.12989/gae.2021.26.1.013.
- Qin, H. and Guo, W.D. (2016), "Response of Static and Cyclic Laterally Loaded Rigid Piles in Sand", Mar. Georesour. Geotec., 34(2),1 38-153. https://doi.org/10.1080/1064119X.2014.979961.
- Sarkar, R. and Maheshwari, B.K. (2012), "Effects of separation on the behavior of soil-pile interaction in liquefiable soils", Int. J. Geomech., 12(1), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000074.
- Semblat, J.F. and Brioist, J. J. (2000), "Efficiency of higher order finite element for the analysis of seismic wave propagation", J. Sound Vib., 231(2), 460-467. https://doi.org/10.1006/jsvi.1999.2636.
- Shao, W., Yang, D., Shi, D. and Liu, Y. (2019), "Degradation of lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading", Mar. Georesour. Geotec., 37(8), 999-1006. https://doi.org/10.1080/1064119X.2018.1521486.
- Shi, J., Zhang, Y., Chen, L. and Fu, Z., (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.
- Singh, S. and Patra, N.R. (2021), "Lateral dynamic response of tapered pile embedded in a cross-anisotropic medium", J. Earthq. Eng., 26, 1-22. https://doi.org/10.1080/13632469.2021.1891157.
- Staubach, P., Machacek, J., Bienen, B. and Wichtmann, T., (2022), "Long-term response of piles to cyclic lateral loading following vibratory and impact driving in water-saturated sand", J. Geotech. Geoenviron. Eng., 148(11). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002906.
- Sungyani, T. and Desai, A.K. (2017), "Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling", Earthq. Struct., 12(6), 629-641. https://doi.org/10.12989/eas.2017.12.6.629.
- Tamura, S., Ohno, Y., Shibata, K., Funahara, H., Nagao, T. and Kawamata, Y. (2021), "E-Defense shaking test and pushover analyses for lateral pile behavior in a group considering soil deformation in vicinity of piles", Soil Dyn. Earthq. Eng., 142, 106529. https://doi.org/10.1016/j.soildyn.2020.106529.
- Tantayopin, K. and Thammarak, P. (2017), "Effect of soft soil layer on local dynamic response of floating pile under harmonic lateral loading", Can. Geotech. J., 54(12), 1637-1646. https://doi.org/10.1139/cgj-2016-0371.
- Wang, J., Zhou, D. and Liu, W. (2014), "Horizontal impedance of pile groups considering shear behavior of multilayered soils", Soils Found., 54(5), 927-937. https://doi.org/10.1016/j.sandf.2014.09.001
- Wang, L., Zhou, W., Guo, Z. and Rui, S. (2020), "Frequency change and accumulated inclination of offshore wind turbine jacket structure with piles in sand under cyclic loadings", Ocean Eng., 217, 108045. https://doi.org/10.1016/j.oceaneng.2020.108045.
- Wang, H., Wang, L., Hong, Y., Masin, D., Li, W., He, B. and Pan, H. (2021), "Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand", Ocean Eng., 226, 108299. https://doi.org/10.1016/j.oceaneng.2020.108299.
- Wen, X., Zhou, F., Fukuwa, N. and Zhu, H. (2015), "A simplified method for impedance and foundation input motion of a foundation supported by pile groups and its application", Comput. Geotech., 69, 301-319. https://doi.org/10.1016/j.compgeo.2015.06.004.
- Zhang, Y., Chen, X., Zhang, X., Ding, M., Wang, Y. and Liu, Z., (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi.org/10.12989/eas.2020.19.4.273.
- Zhang, Y. and Ng, C.W.W., (2017), "Centrifuge modeling of single pile response due to lateral cyclic loading in kaolin clay", Mar. Georesour. Geotec., 35(7), 999-1007. https://doi.org/10.1080/1064119X.2016.1275894.
- Zhang, X., Zhang, C., Liu, Y. and Hu, Z. (2021), "Nondimensional parametric method for studying lateral cyclic response of offshore monopiles in sand", Mar. Georesour. Geotec., 39(4), 482-493. https://doi.org/10.1080/1064119X.2020.1717696.
- Zhang, F., Okawa, K. and Kimura, M. (2008), "Centrifuge model test on dynamic behavior of group-pile foundation with inclined piles and its numerical simulation", Front. Archit. Civ. Eng. China, 2(3), 233-241. https://doi.org/10.1007/s11709-008-0033-7.
- Zheng, C., Liu, H., Ding, X. and Fu, Q. (2013), "Horizontal vibration of a large-diameter pipe pile in viscoelastic soil", Math. Problem. Eng., 2013(3), 1-13. 269493. https://doi.org/10.1155/2013/269493.
- Zheng, C., Liu, H. and Ding, X. (2016), "Lateral dynamic response of a pipe pile in saturated soil layer", Int. J. Numer. Anal. Method. Geomech., 40(2), 159-184. https://doi.org/10.1002/nag.2388.
- Zhou, D., Lo, S.H., Au, F.T.K. and Cheung, Y.K. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.
- Zhou, X.L. and Wang, J.H. (2009), "Analysis of pile groups in a poroelastic medium subjected to horizontal vibration", Comput Geotech, 36(3), 406-418. https://doi.org/10.1016/j.compgeo.2008.08.013.
- Zhu, B., Wu, X., Wang, Y. and Zhou, Y. (2021), "Centrifuge modelling for seismic response of single pile for wind turbine subjected to lateral load", Mar. Georesour. Geotec., 39(11), 1320-1338. https://doi.org/10.1080/1064119X.2020.1834654.