DOI QR코드

DOI QR Code

Impact of soft and stiff soil interlayers on the pile group dynamic response under lateral harmonic load

  • Masoud Oulapour (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Sam Esfandiari (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Mohammad M. Olapour (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz)
  • Received : 2022.05.19
  • Accepted : 2023.05.04
  • Published : 2023.06.25

Abstract

The interlayers, either softer or stiffer than the surrounding layers, are usually overlooked during field investigation due to the small thickness. They may be neglected through the analysis process for simplicity. However, they may significantly affect the dynamic behavior of the soil-foundation system. In this study, a series of 3D finite-element Direct-solution steady-state harmonic analyses were carried out using ABAQUS/CAE software to investigate the impacts of interlayers on the dynamic response of a cast in place pile group subjected to horizontal harmonic load. The experimental data of a 3×2 pile group testing was used to verify the numerical modeling. The effects of thickness, depth, and shear modulus of the interlayers on the dynamic response of the pile group are investigated. The simulations were conducted on both stiff and soft soils. It was found that the soft interlayers affect the frequency-amplitude curve of the system only in frequencies higher than 70% of the resonant frequency of the base soil. While, the effect of stiff interlayer in soft base soil started at frequency of 35% of the resonant frequency of the base soil. Also, it was observed that a shallow stiff interlayer increased the resonant amplitude by 11%, while a deep one only increased the resonant frequency by 7%. Moreover, a shallow soft interlayer increased the resonant frequency by 20% in soft base soils, whereas, it had an effect as low as 6% on resonant amplitude. Also, the results showed that deep soft interlayers increased the resonant amplitude by 17 to 20% in both soft and stiff base soils due to a reduction in lateral support of the piles. In the cases of deep thick, soft interlayers, the resonant frequency reduced significantly, i.e., 16 to 20%. It was found that the stiff interlayers were most effective on the amplitude and frequency of the pile group.

Keywords

Acknowledgement

The authors also highly appreciate the anonymous reviewers' valuable comments and constructive suggestions, which improved this paper greatly.

References

  1. ABAQUS/CAE (2016), Analysis user's guide manual, Simulia: Providence, RI, USA.
  2. Ai, Z., Li, Z. and Wang, L. (2016), "Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space", J. Sound Vib., 385, 171-183. https://doi.org/10.1016/j.jsv.2016.09.016.
  3. Al-Omari, R.R., Fattah, M.Y. and Kallawi, A.M. (2019), "Laboratory study on load carrying capacity of pile group in unsaturated clay", Arab J. Sci. Eng., 44, 4613-4627. https://doi.org/10.1007/s13369-018-3483-9.
  4. Anoyatis, G. and Lemnitzer, A. (2017), "Dynamic pile impedances for laterally-loaded piles using improved Tajimi and Winkler formulations", Soil Dyn. Earthq. Eng., 92, 279-297. https://doi.org/10.1016/j.soildyn.2016.09.020.
  5. Anoyatis, G., Mylonakis, G. and Lemnitzer, A. (2016), "Soil resistance to lateral harmonic pile motion", Soil Dyn. Earthq. Eng., 87, 164-179. https://doi.org/10.1016/j.soildyn.2016.05.004.
  6. API RP 2A-WSD (2014), Recommended practice for planning, designing and constructing fixed offshore platforms-Working stress design. American Petroleum Institute; 200 Massachusetts Avenue, Northwest Suite 1100, Washington, DC 20001 USA.
  7. Arshad, M. and O'Kelly, B.C. (2016), "Analysis and design of monopole foundations for offshore wind-turbine structures", Mar. Georesour. Geotec., 34(6), 503-525. https://doi.org/10.1080/1064119X.2015.1033070.
  8. ASCE/SEI 7-22 (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers (ASCE); Reston, Virginia, United States.
  9. Barari, A., Zeng, X., Rezania, M. and Ibsen, L.B. (2021), "Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions", Geomech. Eng., 26(2),175-190. https://doi.org/10.12989/gae.2021.26.2.175.
  10. Basack, S. and Nimbalkar, S. (2018), "Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading", Int. J. Geomech., 18(7), https://doi.org/10.1061/(ASCE)GM.1943-5622.0001188.
  11. Bhowmik, D., Baidya, D.K. and Dasgupta, S.P. (2013), "A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading", Soil Dyn. Earthq. Eng., 53, 119-129. https://doi.org/10.1016/j.soildyn.2013.06.011.
  12. Biswas, S. and Manna, B. (2014), "Nonlinear response of full-scale pile under machine-induced coupled vibrations", GeoCongress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Atlanta, US, February.
  13. Cao, M. and Zhou, A. (2020), "Fictitious pile method for fixed-head pile groups subjected to horizontal loading", Soils Found., 60(1), 63-76. https://doi.org/10.1016/j.sandf.2020.01.005.
  14. Catal, H.H. (2006), "Free vibration of semi-rigid connected and partially embedded piles with the effects of the bending moment, axial and shear force engineering structures", Eng. Struct., 28(14), 1911-1918. https://doi.org/10.1016/j.engstruct.2006.03.018.
  15. Cetin, D. and Simsek, M. (2011), "Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium", Struct. Eng. Mech., 40(4), 583-594. https://doi.org/10.12989/sem.2011.40.4.583.
  16. Chandrasekaran, S.S., Boominathan, A. and Dodagoudar, G.R. (2010), "Experimental Investigations on the behaviour of Pile groups in clay under lateral cyclic loading", Geotech. Geol. Eng., 28(5), 603-617. https://doi.org/10.1007/s10706-010-9318-4.
  17. Chiou, J.S., Xu, Z.W., Tsai, C.C. and Hwang, J.H. (2018), "Lateral cyclic response of an aluminum model pile in sand", Mar. Georesour. Geotec., 36(5), 554-563. https://doi.org/10.1080/1064119X.2017.1351504.
  18. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. https://doi.org/10.12989/gae.2019.19.1.079.
  19. Choudhary, S.S., Biswas, S. and Manna, B. (2016), "Dynamic coupled response of 6-pile groups with different pile arrangements", Japanese Geotech. Society Special Publication, 2(38), 1389-1392. https://doi.org/10.3208/jgssp.IND-15.
  20. Chung, S.H. and Yang, S.R. (2017), "Numerical analysis of small-scale model pile in unsaturated clayey soil", Int J Civ Eng, 15(6), 877-886. https://doi.org/10.1007/s40999-016-0065-7.
  21. Ding, Z., Song, C., Chen, L. and Shi, K. (2020), "Dynamic analysis of laterally loaded single piles in sandy soils considering sliding and debonding on the pile-soil interface", Ocean Eng., 217, 107720. https://doi.org/10.1016/j.oceaneng.2020.107720.
  22. Ding, X., Luan, L., Zheng, C. and Zhu, W. (2017), "Influence of the second-order effect of axial load on lateral dynamic response of a pipe pile in saturated soil layer", Soil Dyn. Earthq. Eng., 103, 86-94. https://doi.org/10.1016/j.soildyn.2017.09.007.
  23. Dobry, R. and Gazetas, G. (1988), "Simple method for dynamic stiffness and damping of floating pile groups", Geotechnique, 38(4), 557-574. https://doi.org/10.1680/geot.1988.38.4.557.
  24. El-Marsafawi, H., Han, Y. and Novak, M. (1992), "Dynamic experiments on two pile groups", J. Geotech. Eng., 118(4), 576-592. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:4(576).
  25. Fattah, M.Y., Karim, H.H. and Al-Recaby, M.K.M. (2021a), "Investigation of the end bearing in pile group model in dry soil under horizontal excitation", Acta Geotechnica Slovenica, 1, 79-106. https://doi.org/10.18690/actageotechslov.18.1.79-106.2021.
  26. Fattah M.Y., Karim H.H. and Al-Recaby M.K.M. (2021b), "Vertical and horizontal displacement of model piles in dry soil with horizontal excitation", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 174(4), 239-258. https://doi.org/10.1680/jstbu.18.00207.
  27. Fattah, M.Y., Karim, H.H. and Al-Recaby, M.K.M., (2016), "Dynamic Behavior of Pile Group Model in Two - Layer Sandy Soil Subjected to Lateral Earthquake Excitation", Global J. Eng. Sci. Res. Management, 3(8), 57-80.
  28. Fayyazi, M.S., Taiebat, M. and Finn, W.D.L. (2014), "Group reduction factors for analysis of laterally loaded pile groups", Can. Geotech., J., 51(7), 758-769. https://doi.org/10.1139/cgj-2013-0202.
  29. Gerolymos, N., Escoffier, S., Gazetas, G. and Garnier, J. (2009), "Numerical modeling of centrifuge cyclic lateral pile load experiments", Earthq. Eng. Eng. Vib., 8(1), 61-76. https://doi.org/10.1007/s11803-009-9005-8
  30. Ghayoomi, M., Ghadirianniari, S., Khosravi, A. and Mirshekari, M. (2018), "Seismic behavior of pile-supported systems in unsaturated sand", Soil Dyn. Earthq. Eng., 112, 162-173. https://doi.org/10.1016/j.soildyn.2018.05.014.
  31. Hong, Y., He, B., Wang, L.Z., Wang, Z., Ng, C. W.W. and Masin, D. (2017), "Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: Centrifuge tests and numerical modelling" Can. Geotech. J., 54(6), 806-824. https://doi.org/10.1139/cgj-2016-0356.
  32. Huang, M., Liu, L., Shi, Z. and Li, S. (2021), "Modeling of laterally cyclic loaded monopile foundation by anisotropic undrained clay model", Ocean Eng., 228, Art.108915. https://doi.org/10.1016/j.oceaneng.2021.108915.
  33. Jiang, Z. and Ashlock, J.C. (2020), "Computational simulation of three-dimensional dynamic soil-pile group interaction in layered soils using disturbed-zone model", Soil Dyn. Earthq. Eng., 130, 105928. https://doi.org/10.1016/j.soildyn.2019.105928.
  34. Kahribt, M.A. and Abbas, J.M. (2018), "Lateral response of a single pile under combined axial and lateral cyclic loading in sandy soil", Civil Eng. J., 4(9), 1996-2010. https://doi.org/10.28991/cej-03091133.
  35. Kaynia, A.M. and Kausel, F. (1982), "Dynamic behavior of pile groups", Proceedings of the 2nd International Conference on Numerical Methods in Offshore Piling, 1982. Austin, Texas.
  36. Kaynia, A.M. and Kausel, E. (1991), "Dynamics of piles and pile groups in layered soil media", Soil Dyn. Earthq. Eng., 10(8), 386-401. https://doi.org/10.1016/0267-7261(91)90053-3.
  37. Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
  38. Kong, D., Zhu, J., Long, Y., Zhu, B., Yang, Q., Gao, Y. and Chen, Y. (2021), "Centrifuge modelling on monotonic and cyclic lateral behaviour of monopiles in kaolin clay", Geotechnique, 72(3),1-14. https://doi.org/10.1680/jgeot.19.P.402
  39. Ladhane, K.B. and Sawant, V.A. (2016), "Effect of pile group configurations on nonlinear dynamic response", Int. J. Geomech., 16(1). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000476.
  40. Liang, R., Yuan, Y., Fu, D. and Liu, R. (2021), "Cyclic response of monopile-supported offshore wind turbines under wind and wave loading in sand", Mar. Georesour. Geotec., 39(10), 1230-1243. https://doi.org/10.1080/1064119X.2020.1821848.
  41. Liao, W., Wu, J., Wang, Z., Yan K. and Ouyang, F. (2021), "Experimental investigation of monopile in overconsolidated marine clay subjected to multiple cyclic lateral loading events", Mar. Georesour. Geotec., 40(8), 953-966. https://doi.org/10.1080/1064119X.2021.1958034.
  42. Luan, L., Ding, X., Zheng, C., Kouretzis, G. and Wu, Q. (2019b), "Dynamic response of pile groups subjected to horizontal loads", Can Geotech J., 57(4), 469-481. https://doi.org/10.1139/cgj-2019-0031.
  43. Luan, L., Zheng, C. and Kouretzis, G.P. (2019a), "Simplified three-dimensional analysis of horizontally vibrating floating and fixed-end pile groups", Int J Numer Anal Method. GeoMech., 43(16), 2585-2596. https://doi.org/10.1002/nag.2997.
  44. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Division, 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144.
  45. Manna, B. and Baidya, D. (2010), "Nonlinear dynamic response of piles under horizontal excitation", J. Geotech. Geoenviron. Eng., 136(12), 1600-1609. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000388.14.
  46. Maeso, O., Aznarez, J.J. and Garcia, F. (2005), "Dynamic impedances of piles and groups of piles in saturated soils", Comput. Struct., 83(10-11), 769-782. https://doi.org/10.1016/j.compstruc.2004.10.015.
  47. Nogami, T., Otani, J., Konagai, K. and Chen, H.L. (1992), "Nonlinear soil-pile interaction model for dynamic lateral motion", J. Geotech. Eng., 118(1), 89-106. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(89).
  48. Novak, M. and El-Sharnouby, B. (1984), "Evaluation of dynamic experiments on pile group", J. Geotech. Eng., 110(6), 738-756. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(738).
  49. Park, D. and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", J. Earthq. Eng., 8(2), 249-274. https://doi.org/10.1080/13632460409350489.
  50. Peric, D. and Owen, D. (1992), "Computational model for 3-D contact problems with friction based on the penalty method", Int. J. Numer. Method. Eng., 35(6), 1289-1309. https://doi.org/10.1002/nme.1620350609.
  51. Poorjafar, A., Esmaeili-Falak, M. and Katebi, H., (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-15. https//doi.org/10.12989/gae.2021.26.1.013.
  52. Qin, H. and Guo, W.D. (2016), "Response of Static and Cyclic Laterally Loaded Rigid Piles in Sand", Mar. Georesour. Geotec., 34(2),1 38-153. https://doi.org/10.1080/1064119X.2014.979961.
  53. Sarkar, R. and Maheshwari, B.K. (2012), "Effects of separation on the behavior of soil-pile interaction in liquefiable soils", Int. J. Geomech., 12(1), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000074.
  54. Semblat, J.F. and Brioist, J. J. (2000), "Efficiency of higher order finite element for the analysis of seismic wave propagation", J. Sound Vib., 231(2), 460-467. https://doi.org/10.1006/jsvi.1999.2636.
  55. Shao, W., Yang, D., Shi, D. and Liu, Y. (2019), "Degradation of lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading", Mar. Georesour. Geotec., 37(8), 999-1006. https://doi.org/10.1080/1064119X.2018.1521486.
  56. Shi, J., Zhang, Y., Chen, L. and Fu, Z., (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.
  57. Singh, S. and Patra, N.R. (2021), "Lateral dynamic response of tapered pile embedded in a cross-anisotropic medium", J. Earthq. Eng., 26, 1-22. https://doi.org/10.1080/13632469.2021.1891157.
  58. Staubach, P., Machacek, J., Bienen, B. and Wichtmann, T., (2022), "Long-term response of piles to cyclic lateral loading following vibratory and impact driving in water-saturated sand", J. Geotech. Geoenviron. Eng., 148(11). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002906.
  59. Sungyani, T. and Desai, A.K. (2017), "Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling", Earthq. Struct., 12(6), 629-641. https://doi.org/10.12989/eas.2017.12.6.629.
  60. Tamura, S., Ohno, Y., Shibata, K., Funahara, H., Nagao, T. and Kawamata, Y. (2021), "E-Defense shaking test and pushover analyses for lateral pile behavior in a group considering soil deformation in vicinity of piles", Soil Dyn. Earthq. Eng., 142, 106529. https://doi.org/10.1016/j.soildyn.2020.106529.
  61. Tantayopin, K. and Thammarak, P. (2017), "Effect of soft soil layer on local dynamic response of floating pile under harmonic lateral loading", Can. Geotech. J., 54(12), 1637-1646. https://doi.org/10.1139/cgj-2016-0371.
  62. Wang, J., Zhou, D. and Liu, W. (2014), "Horizontal impedance of pile groups considering shear behavior of multilayered soils", Soils Found., 54(5), 927-937. https://doi.org/10.1016/j.sandf.2014.09.001
  63. Wang, L., Zhou, W., Guo, Z. and Rui, S. (2020), "Frequency change and accumulated inclination of offshore wind turbine jacket structure with piles in sand under cyclic loadings", Ocean Eng., 217, 108045. https://doi.org/10.1016/j.oceaneng.2020.108045.
  64. Wang, H., Wang, L., Hong, Y., Masin, D., Li, W., He, B. and Pan, H. (2021), "Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand", Ocean Eng., 226, 108299. https://doi.org/10.1016/j.oceaneng.2020.108299.
  65. Wen, X., Zhou, F., Fukuwa, N. and Zhu, H. (2015), "A simplified method for impedance and foundation input motion of a foundation supported by pile groups and its application", Comput. Geotech., 69, 301-319. https://doi.org/10.1016/j.compgeo.2015.06.004.
  66. Zhang, Y., Chen, X., Zhang, X., Ding, M., Wang, Y. and Liu, Z., (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi.org/10.12989/eas.2020.19.4.273.
  67. Zhang, Y. and Ng, C.W.W., (2017), "Centrifuge modeling of single pile response due to lateral cyclic loading in kaolin clay", Mar. Georesour. Geotec., 35(7), 999-1007. https://doi.org/10.1080/1064119X.2016.1275894.
  68. Zhang, X., Zhang, C., Liu, Y. and Hu, Z. (2021), "Nondimensional parametric method for studying lateral cyclic response of offshore monopiles in sand", Mar. Georesour. Geotec., 39(4), 482-493. https://doi.org/10.1080/1064119X.2020.1717696.
  69. Zhang, F., Okawa, K. and Kimura, M. (2008), "Centrifuge model test on dynamic behavior of group-pile foundation with inclined piles and its numerical simulation", Front. Archit. Civ. Eng. China, 2(3), 233-241. https://doi.org/10.1007/s11709-008-0033-7.
  70. Zheng, C., Liu, H., Ding, X. and Fu, Q. (2013), "Horizontal vibration of a large-diameter pipe pile in viscoelastic soil", Math. Problem. Eng., 2013(3), 1-13. 269493. https://doi.org/10.1155/2013/269493.
  71. Zheng, C., Liu, H. and Ding, X. (2016), "Lateral dynamic response of a pipe pile in saturated soil layer", Int. J. Numer. Anal. Method. Geomech., 40(2), 159-184. https://doi.org/10.1002/nag.2388.
  72. Zhou, D., Lo, S.H., Au, F.T.K. and Cheung, Y.K. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.
  73. Zhou, X.L. and Wang, J.H. (2009), "Analysis of pile groups in a poroelastic medium subjected to horizontal vibration", Comput Geotech, 36(3), 406-418. https://doi.org/10.1016/j.compgeo.2008.08.013.
  74. Zhu, B., Wu, X., Wang, Y. and Zhou, Y. (2021), "Centrifuge modelling for seismic response of single pile for wind turbine subjected to lateral load", Mar. Georesour. Geotec., 39(11), 1320-1338. https://doi.org/10.1080/1064119X.2020.1834654.