• Title/Summary/Keyword: Lateral dynamics

Search Result 241, Processing Time 0.024 seconds

A Study on the Dynamic Analysis on the Cross Directional Register in Roll-to-roll e-Printing Systems (롤투롤 인쇄전자에서의 횡방향 레지스터 동적 특성 모델링)

  • Kang, Hyun-Kyoo;Ahn, Jin-Hyun;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2010
  • For the adaption of roll-to-roll printing method to the printed electronics, it is mandatory to increase the resolution of register errors. Therefore it is desired to derive the mathematical modeling of register error or to develop controller design. The cross direction register error was derived considering both lateral motion of moving web and transverse position of printing roll. The mathematical modeling was validated and the relationship between the lateral motion and register error was analyzed by numerical simulations in various operating conditions using multi-layer direct gravure printing machine. The results could be used for a design of the CD register in the multi-layer printing and the lateral motion caused by translation.

Simulation of Train Crashes in Three Dimensions (3차원에서의 열차 충돌사고 시뮬레이션 연구)

  • 한형석;구정서
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.187-195
    • /
    • 2002
  • It is important to predict the crash behavior of trains to improve their crashworthiness. This paper investigates the simulation of high-speed train crashes in three dimensions using multibody dynamics. At present, little is known about three-dimensional crash simulations. This study shows that it is possible to simulate overriding and lateral buckling, including results from one- or two-dimensional simulations. Several parameters, however, such as computational time and large deformation of structures, need further investigation.

Dynamic analysis of KTX running characteristics (KTX 주행특성 해석)

  • Kang Bu-Byoung;Chung Heung-Chai;Kim Jae-Chul;Goo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.718-723
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

  • PDF

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Lateral Damper of Subway Vehicle for Preventing Abnormal Impact (지하철 전동차 비정상 충격 방지를 위한 횡댐퍼에 관한 연구)

  • Shin, Yujeong;You, Wonhee;Park, Joonhyuk;Hur, Hyunmoo;Jeon, Juyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • In a subway vehicle, a lateral damper is used for compensating the lateral stiffness deterioration due to the air-spring as a secondary suspension. This lateral damper can reduce the lateral vibration of the carbody. When the damping force of the lateral damper is lowered, the running stability and ride quality of the subway vehicles worsens and the lateral motion of the carbody is increased. In this study, the lateral displacement variation of the carbody according to the damping force of the lateral damper was analyzed by multi-body dynamics to solve the abnormal impact problem during vehicle operation. Furthermore, the noise and vibration due to abnormal impact were considered. An adequate damping coefficient of the lateral damper for the subway vehicle treated in this paper was suggested for preventing abnormal impact.

DEVELOPMENT OF ROBUST LATERAL COLLISION RISK ASSESSMENT METHOD (측후방 충돌 안전 시스템을 위한 횡방향 충돌 위험 평가 지수 개발)

  • Kim, Kyuwon;Kim, Beomjun;Kim, Dongwook;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • This paper presents a lateral collision risk index between an ego vehicle and a rear-side vehicle. The lateral collision risk is designed to represent a lateral collision risk and provide the appropriate threshold value of activation of the lateral collision management system such as the Blind Spot Detection(BSD). The lateral collision risk index is designed using the Time to Line Crossing(TLC) and the longitudinal collision index at the predicted TLC. TLC and the longitudinal collision index are calculated with the signals from the exterior sensor such as the radar equipped on the rear-side of a vehicle and a vision sensor which detects the distance and time to the lane departure. For the robust situation assessment, the perception of driving environment determining whether the road is straighten or curved should be determined. The relative motion estimation method has been proposed with the road information via the integrated estimator using the environment sensors and vehicle sensor. A lateral collision risk index was composed with the estimated relative motion considering the relative yaw angle. The performance of the proposed lateral collision risk index is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Two Degree-of-Freedom $H_{\infty}$ Controller Design and Simulation For the Lateral Control of the Vehicle (차량 횡 방향 제어를 위한 2 자유도 $H_{\infty}$제어기 설계 및 모의실험)

  • 장재필;정길도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.112-112
    • /
    • 2000
  • The aim of this paper is to design a two degree-of-freedom H$_{\infty}$ controller for lateral control of the vehicle. The object of this controller is to track the centerline of the reference lane. The controller is splited into two parts, feedback and prefilter. The feedback part is for both robust stability and disturbance attenuation, while the prefilter is for improving the robust tracking properties of closed loop system. This paper is consist of preface, background theory, dynamics of vehicle, controller design and computer simulation.ter simulation.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Effects of Halothane on Dimyristoylphosphatidylcholine Lipid Bilayer Structure: A Molecular Dynamics Simulation Study

  • Oh, Kwang-Jin;Klein, Michael L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2087-2092
    • /
    • 2009
  • We performed molecular dynamics simulations on dimyristoylphosphatidylcholine lipid bilayer with 50 mol% halothane. The structural properties, electron density profile, segmental order parameter of acyl chains, headgroup orientation distribution, water dipole orientation distribution, have been examined. Overall the effects of the halothane molecules on structural properties of DMPC lipid bilayer were found to be small. The electron density profiles, the segmental order parameter, the headgroup orientation, the water dipole orientation were not affected significantly by the halothane molecules. Pressure tensor calculations shows that the lateral pressure increases at the hydrocarbon tail region and the headgroup region, and decreases at the water-headgroup interfacial region.

Robust Vehicle Stability Control Using Disturbance Observer (외란 관측기를 이용한 견실한 차량 안정성 제어)

  • Hahn, Jin-Oh;Yi, Kyong-Su;Kang, Soo-Joon;Lee, Il-Kyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2519-2526
    • /
    • 2002
  • A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.