• 제목/요약/키워드: Lateral dynamics

검색결과 242건 처리시간 0.024초

시변 절환면을 갖는 슬라이딩 모드에 의한 차량의 횡방향 운동제어 (Control of Vehicle Lateral Dynamics using Sliding Mode with Time-Varying Switching Surface)

  • 이창로;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving and be robust to the parameter uncertainties in the plant model. Control performance was evaluated from the simulation.

  • PDF

차량동특성 및 도로경사도 추정에 관한 연구 (A Study on the Vehicle Dynamics and Road Slope Estimation)

  • 김문식
    • 한국산업융합학회 논문집
    • /
    • 제22권5호
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

신경회로망을 이용한 자동조종장치 설계 (An application of neural network to autopilot design)

  • 유재종;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.619-623
    • /
    • 1993
  • In this paper, a neural network is appled to design a lateral autopilot for airplanes. Linearized lateral dynamics is used in training the neural network controller and verifying the performance as well. To train the neural network, back propagation algorithm is used. In this training, no information about the dynamics to be controlled except sign and rough magnitude of control derivatives is needed. It is shown by computer simulations that the performance and stability margin are satisfactory.

  • PDF

슬라이딩 모드 제어를 이용한 시각센서 기반의 차선변경제어 시스템 설계 (Vision-Based Lane Change Maneuver using Sliding Mode Control for a Vehicle)

  • 장승호;김상우
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.194-207
    • /
    • 2000
  • In this paper, we suggest a vision-based lane change control system, which can be applied on the straight road, without additional sensors such as a yaw rate sensor and a lateral accelerometer. In order to reduce the image processing time, we predict a reference line position during lane change using the lateral dynamics and the inverse perspective mapping. The sliding mode control algorithm with a boundary layer is adopted to overcome variations of parameters that significantly affects a vehicle`s lateral dynamics and to reduce chattering phenomenon. However, applying the sliding mode control to the system with a long sampling interval, the stability of a control system may seriously be affected by the sampling interval. Therefore, in this paper, a look ahead offset has been used instead of a lateral offset to reduce the effect of the long sampling interval due to the image processing time. The control algorithm is developed to follow the desired trajectory designed in advance. In the design of the desired trajectory, we take account of the constraints of lateral acceleration and lateral jerk for ride comfort. The performance of the suggested control system is evaluated in simulations as well as field tests.

  • PDF

Patellofemoral Instability in Children: Imaging Findings and Therapeutic Approaches

  • Hee Kyung Kim;Shital Parikh
    • Korean Journal of Radiology
    • /
    • 제23권6호
    • /
    • pp.674-687
    • /
    • 2022
  • Patellofemoral instability (PFI) is common in pediatric knee injuries. PFI results from loss of balance in the dynamic relationship of the patella in the femoral trochlear groove. Patellar lateral dislocation, which is at the extreme of the PFI, results from medial stabilizer injury and leads to the patella hitting the lateral femoral condyle. Multiple contributing factors to PFI have been described, including anatomical variants and altered biomechanics. Femoral condyle dysplasia is a major risk factor for PFI. Medial stabilizer injury contributes to PFI by creating an imbalance in dynamic vectors of the patella. Increased Q angle, femoral anteversion, and lateral insertion of the patellar tendon are additional contributing factors that affect dynamic vectors on the patella. An imbalance in the dynamics results in patellofemoral malalignment, which can be recognized by the presence of patella alta, patellar lateral tilt, and lateral subluxation. Dynamic cross-sectional images are useful for in vivo tracking of the patella in patients with PFI. Therapeutic approaches aim to restore normal patellofemoral dynamics and prevent persistent PFI. In this article, the imaging findings of PFI, including risk factors and characteristic findings of acute lateral patellar dislocation, are reviewed. Non-surgical and surgical approaches to PFI in pediatric patients are discussed.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.

비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어 (Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

채널 유동 내 유연한 캡슐의 관성 이동과 움직임 (INERTIAL MIGRATION AND DYNAMICS OF AN ELASTIC CAPSULE IN CHANNEL FLOW)

  • 신수재;성형진
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.107-112
    • /
    • 2012
  • We explored the dynamic motions and the lateral equilibrium positions of an elastic capsule in channel flow at moderate Reynolds number varying Re, aspect ratio, size ratio, membrane stretching and bending coefficient. The transition of tank-treading/swinging to tumbling motion was observed in the simulations and the transition of dynamic motions for capsules resulted in different trend of the variation in the lateral equilibrium positions. Though other conditions were similar, the capsule with tumbling motion migrated closer to the wall than that with tank-treading motion.

능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구 (A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

롤의 웹 표면 수직방향 기울임을 이용한 새로운 웹 가이더 설계에 관한 연구 (A Study on the Design of a New Web Guiding Mechanism Using a Tilting Roller)

  • 신한식;지혁종;신기현
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.84-89
    • /
    • 2001
  • The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web and to the quality of the final web products. But, the perfect alignment of the rollers is not always possible and the web itself can be cambered. Thus the control of lateral behavior of the moving web is critical in the most of web handling systems. The web guiding system that adjusts the angle of the alignment between two adjacent rollers is commonly used in industry. But, in this paper a new web guiding system is proposed by using the lateral dynamics of the moving web induced by a tilted roller in normal direction of a web. The computer simulation study was carried out to verify the steering performance of the suggested guiding system. Computer simulation study shows that the performance of the new guiding mechanism is better than that of an existing guiding mechanism.

  • PDF