• Title/Summary/Keyword: Lateral dynamic model

Search Result 313, Processing Time 0.026 seconds

The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance (대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향)

  • Moon, Il-Dong;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

Some aspects of the dynamic cross-wind response of tall industrial chimney

  • Gorski, Piotr
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.259-279
    • /
    • 2009
  • The paper is concerned with the numerical study of the cross-wind response of the 295 m-tall six-flue industrial chimney, located in the power station of Belchatow, Poland. The response of the chimney due to turbulent wind flow is caused by the lateral turbulence component and vortex excitation with taking into account motion-induced wind forces. The cross-wind response has been estimated by means of the random vibration approach. Three power spectral density functions suggested by Kaimal, Tieleman and Solari for the evaluation of the lateral turbulence component response are taken into account. The vortex excitation response has been calculated by means of the Vickery and Basu's model including some complements. Motion-induced wind forces acting on a vibrating chimney have been modeled as a nonlinear aerodynamic damping force. The influence of three components mentioned above on the total cross-wind response of the chimney has been investigated. Moreover, the influence of damping ratios, evaluated by Multi-mode Random Decrement Technique, and number of mode shapes of the chimney have been examined. Computer programmes have been developed to obtain responses of the chimney. The numerical results and their comparison are presented.

Parametric Study on Thermal Buckling of CWR Tracks (장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구)

  • 최동호;김호배
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

Parametric Study on SDOF System with MR Damper Using Hysteretic Biviscous Model (단자유도 시스템에 대한 이력이점성 모델을 사용한 MR감쇠기 변수 연구)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.27-33
    • /
    • 2004
  • In this paper, various dynamic model of magnetorheological (MR) damper, is required for describing the hysteresis of MR damper and for their application are investigated to structural control. The dynamic characteristics and control effects of the modeling methods for MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen with mass element and phenomenological models are studied. Of these models, hysteretic biviscous model which is simple and describes the hysteretic characteristics, is chosen for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force.

  • PDF

Effects of modelling on the earthquake response of asymmetrical multistory buildings

  • Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.211-225
    • /
    • 1994
  • Responses of asymmetrical multistorey buildings to earthquakes are obtained by quasi-static code approach and real time dynamic analysis, using two different structural models. In the first model, all vertical members are assumed to be restrained at the slab levels and hence their end rotations, about horizontal axes, are taken as zero. In the second model this restriction is removed and the rotation is assumed to be proportional to the lateral stiffness of the member. A simple microcomputer based procedure is used in the analyses, by both models. Numerical examples are presented where results obtained from both the models are given. Effects of modelling on the response of three buildings, each with a different type and degree of asymmetry, are studied. Results for deflections and shear forces are presented and the effects of the type of model on the response are discussed.

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Estimated Risk of Radiation Induced Contra Lateral Breast Cancer Following Chest Wall Irradiation by Conformal Wedge Field and Forward Intensity Modulated Radiotherapy Technique for Post-Mastectomy Breast Cancer Patients

  • Athiyaman, Hemalatha;M, Athiyaman;Chougule, Arun;Kumar, HS
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5107-5111
    • /
    • 2016
  • Background: Epidemiological studies have indicated an increasing incidence of radiation induced secondary cancer (SC) in breast cancer patients after radiotherapy (RT), most commonly in the contra-lateral breast (CLB). The present study was conducted to estimate the SC risk in the CLB following 3D conformal radiotherapy techniques (3DCRT) including wedge field and forward intensity modulated radiotherapy (fIMRT) based on the organ equivalent dose (OED). Material and Methods: RT plans treating the chest wall with conformal wedge field and fIMRT plans were created for 30 breast cancer patients. The risks of radiation induced cancer were estimated for the CLB using dose-response models: a linear model, a linear-plateau model and a bell-shaped model with full dose response accounting for fractionated RT on the basis of OED. Results: The plans were found to be ranked quite differently according to the choice of model; calculations based on a linear dose response model fIMRT predict statistically significant lower risk compared to the enhanced dynamic wedge (EDW) technique (p-0.0089) and a non-significant difference between fIMRT and physical wedge (PW) techniques (p-0.054). The widely used plateau dose response model based estimation showed significantly lower SC risk associated with fIMRT technique compared to both wedge field techniques (fIMRT vs EDW p-0.013, fIMRT vs PW p-0.04). The full dose response model showed a non-significant difference between all three techniques in the view of second CLB cancer. Finally the bell shaped model predicted interestingly that PW is associated with significantly higher risk compared to both fIMRT and EDW techniques (fIMRT vs PW p-0.0003, EDW vs PW p-0.0032). Conclusion: In conclusion, the SC risk estimations of the CLB revealed that there is a clear relation between risk associated with wedge field and fIMRT technique depending on the choice of model selected for risk comparison.

Parametric Study about Real Train Loading to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Bridge (무도상 판형교의 횡거동 분석을 위한 주행하중 매개변수 연구)

  • Kim, Hyun-Min;Oh, Ji-Taek;Lee, So-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.472-476
    • /
    • 2003
  • A real train load fluctuates along the track because of complicated movements(Bouncing, Rolling, Pitching and Yawing) and rail conditions. This research has for its object in development of a numerical train load model including fluctuation characteristics of lateral forces. It is based on Klingel movement theory of a wheelset on straight track. it presents a propriety of application by comparison between a 3D-Numerical analysis result using this train load model and a measured data. And this paper presents further study subject to improve a method about the train load modeling.

  • PDF

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.