• Title/Summary/Keyword: Latency sensitive

Search Result 65, Processing Time 0.024 seconds

A New Measure for Monitoring Intraoperative Somatosensory Evoked Potentials

  • Jin, Seung-Hyun;Chung, Chun Kee;Kim, Jeong Eun;Choi, Young Doo
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.455-462
    • /
    • 2014
  • Objective : To propose a new measure for effective monitoring of intraoperative somatosensory evoked potentials (SEP) and to validate the feasibility of this measure for evoked potentials (EP) and single trials with a retrospective data analysis study. Methods : The proposed new measure (hereafter, a slope-measure) was defined as the relative slope of the amplitude and latency at each EP peak compared to the baseline value, which is sensitive to the change in the amplitude and latency simultaneously. We used the slope-measure for EP and single trials and compared the significant change detection time with that of the conventional peak-to-peak method. When applied to single trials, each single trial signal was processed with optimal filters before using the slope-measure. In this retrospective data analysis, 7 patients who underwent cerebral aneurysm clipping surgery for unruptured aneurysm middle cerebral artery (MCA) bifurcation were included. Results : We found that this simple slope-measure has a detection time that is as early or earlier than that of the conventional method; furthermore, using the slope-measure in optimally filtered single trials provides warning signs earlier than that of the conventional method during MCA clipping surgery. Conclusion : Our results have confirmed the feasibility of the slope-measure for intraoperative SEP monitoring. This is a novel study that provides a useful measure for either EP or single trials in intraoperative SEP monitoring.

Modeling of TLB Miss Rate and Page Fault Rate for Memory Management in Fast Storage Environments (고속 스토리지 환경의 메모리 관리를 위한 TLB 미스율 및 페이지 폴트율 모델링)

  • Park, Yunjoo;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2022
  • As fast storage has become popular, the memory management system designed for hard disks needs to be reconsidered. In this paper, we observe that memory access latency is sensitive to the page size when fast storage is adopted. We find the reason from the TLB miss rate, which has the increased impact on the memory access latency in comparison with the page fault rate, and there is trade-off between the TLB miss rate and the page fault rate as the page size is varied. To handle such situations, we model the page fault rate and the TLB miss rate accurately as a function of the page size. Specifically, we show that the power fit and the exponential fit with two terms are appropriate for fitting the TLB miss rate and the page fault rate, respectively. We validate the effectiveness of our model by comparing the estimated values from the model and real values.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

A Retrospective Study on the Correlation between Fasting Blood Sugar and Motor Evoked Potentials : Comparison between Central and Peripheral Motor Nerve (공복혈당수치와 운동유발전위의 상관관계에 대한 후향적 분석 : 중추운동신경과 말초운동신경의 비교)

  • Na, Byung-Jo;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Hong, Jin-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.434-441
    • /
    • 2007
  • Objectives : Peripheral neurodegeneration occurs in diabetes mellitus (DM), both sensory and motor nerve. but we don't know exactly if DM affects central nerve pathway for all studies. Electrophysiologic study is one of the most important diagnostic tools for diabetic neuropathy. Electroneurography and electromyography are usually used. but evoked potentials (EP) is more sensitive to small nerve fiber damages and useful for central nerve evaluation in addition to peripheral nerves. Most diabetic neuropathy studies by EP have been performed with somatosensory evoked potentials (SSEP). In contrast, the objective of this study is to investigate if DM targets central motor neurons by assessing the relation between fasting blood sugar (FBS) and motor evoked potentials (MEP) latency. Methods : We inspected the medical records of 34 patients who had MEP tests during admitting days. The latency from cervical portion to abductor pollicis brevis was used as peripheral motor conduction time (PMCT). and the latency from vertex to cervical portion was used as central motor conduction time (CMCT). Then, they were correlated to FBS using correlation analysis. Results : There was a significant linear relation between FBS and PMCT (Pearson's correlation coefficient r=0.487, p<0.01), but a poor linear relation between FBS and CMCT (Pearson's correlation coefficient r=-0.l97. p>0.05). Conclusions : This study suggests that prolonged latencies of MEP in DM may be due to peripheral neuropathy rather than dysfunction of central motor pathway. therefore the clinical use of MEP to diabetic neuropathy has to be divided segmentally.

  • PDF

Garbage Collection Technique for Balanced Wear-out and Durability Enhancement with Solid State Drive on Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 2017
  • Recently, the use of NAND flash memory is being increased as a secondary device to displace conventional magnetic disk. NAND flash memory, as one among non-volatile memories, has many advantages such as low power, high reliability, low access latency, and so on. However, NAND flash memory has disadvantages such as erase-before-write, unbalanced operation speed, and limited P/E cycles, unlike conventional magnetic disk. To solve these problems, NAND flash memory mainly adopted FTL (Flash Translation Layer). In particular, garbage collection technique in FTL tried to improve the system lifetime. However, previous garbage collection techniques have a sensitive property of the system lifetime according to write pattern. To solve this problem, we propose BSGC (Balanced Selection-based Garbage Collection) technique. BSGC efficiently selects a victim block using all intervals from the past information to the current information. In this work, SFL (Search First linked List), as the proposed block allocation policy, prolongs the system lifetime additionally. In our experiments, SFL and BSGC prolonged the system lifetime about 12.85% on average and reduced page migrations about 22.12% on average. Moreover, SFL and BSGC reduced the average response time of 16.88% on average.

A Study of Fronthaul Networks in CRANs - Requirements and Recent Advancements

  • Waqar, Muhammad;Kim, Ajung;Cho, Peter K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4618-4639
    • /
    • 2018
  • One of the most innovative paradigms for the next-generation of wireless cellular networks is the cloud-radio access networks (C-RANs). In C-RANs, base station functions are distributed between the remote radio heads (RHHs) and base band unit (BBU) pool, and a communication link is defined between them which is referred as the fronthaul. This leveraging link is expected to reduce the CAPEX (capital expenditure) and OPEX (operating expense) of envisioned cellular architectures as well as improves the spectral and energy efficiencies, provides the high scalability, and efficient mobility management capabilities. The fronthaul link carries the baseband signals between the RRHs and BBU pool using the digital radio over fiber (RoF) based common public radio interface (CPRI). CPRI based optical links imposed stringent synchronization, latency and throughput requirements on the fronthaul. As a result, fronthaul becomes a hinder in commercial deployments of C-RANs and is seen as one of a major bottleneck for backbone networks. The optimization of fronthaul is still a challenging issue and requires further exploration at industrial and academic levels. This paper comprehensively summarized the current challenges and requirements of fronthaul networks, and discusses the recently proposed system architectures, virtualization techniques, key transport technologies and compression schemes to carry the time-sensitive traffic in fronthaul networks.

A Simulation-Based Study of FAST TCP Compared to SCTP: Towards Multihoming Implementation Using FAST TCP

  • Arshad, Mohammad Junaid;Saleem, Mohammad
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.275-284
    • /
    • 2010
  • The current multihome-aware protocols (like stream control transmission protocol (SCTP) or parallel TCP for concurrent multipath data transfer (CMT) are not designed for high-capacity and large-latency networks; they often have performance problems transferring large data files over shared long-distance wide area networks. It has been shown that SCTP-CMT is more sensitive to receive buffer (rbuf) constraints, and this rbuf-blocking problem causes considerable throughput loss when multiple paths are used simultaneously. In this research paper, we demonstrate the weakness of SCTP-CMT rbuf constraints, and we then identify that rbuf-blocking problem in SCTP multihoming is mostly due to its loss-based nature for detecting network congestion. We present a simulation-based performance comparison of FAST TCP versus SCTP in high-speed networks for solving a number of throughput issues. This work proposes an end-to-end transport layer protocol (i.e., FAST TCP multihoming as a reliable, delaybased, multihome-aware, and selective ACK-based transport protocol), which can transfer data between a multihomed source and destination hosts through multiple paths simultaneously. Through extensive ns-2 simulations, we show that FAST TCP multihoming achieves the desired goals under a variety of network conditions. The experimental results and survey presented in this research also provide an insight on design decisions for the future high-speed multihomed transport layer protocols.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Correlation Between the Prolongation of P300 Latency during Sleep Deprivation and Personality Variables (수면박탈에 의한 P300 잠복기 연장과 성격요소와의 연관성)

  • Lee, Heon-Jeong;Jeon, Hye-Yeon;Kim, Yong-Ku;Suh, Kwang-Yoon;Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.10 no.1
    • /
    • pp.61-66
    • /
    • 2003
  • Objectives: The purpose of this study is to investigate the relationship between the extent of prolongation in P300 latency by sleep deprivation and personality variables. Methods: Eighteen healthy male college students participated in this study. Subjects remained awake for 37 hours under continuous surveillance. In the morning and evening of two consecutive study days, P300 was checked four times. MMPI and STAI-T were checked in the morning of the first day. The 18 subjects were divided into two groups according to their extent of P300 prolongation by sleep deprivation: Group A consisted of short P300 latency prolonged subjects, and group B of long latency prolonged subjects. The MMPI profiles and STAI-T scores of these two groups were compared. Results: Group B showed significantly higher scores in the Mf subscale (t=-2.16, df=16, p=0.046) and Pa subscale (t=-2.61, df=16, p=0.019) than group A. Group B also showed higher F subscale scores at a marginally significant level (t=-2.11, df=16, p=0.052). Conclusion: These results suggest that subjects with higher scores in F, Mf, and Pa subscales tend to have delayed cognitive process and decreased efficiency of mental process by sleep deprivation. It can be hypothesized that individuals who are sensitive, passive, dependent, and easily projecting are susceptible to the deterioration of cognitive function by total sleep deprivation.

  • PDF

An Improved Way of Remote Storage Service based on iSCSI for Mobile Device using Intermediate Server (모바일 디바이스를 위한 iSCSI 기반의 원격 스토리지 서비스에서 중간 서버를 이용한 성능 개선 방안)

  • Kim Daegeun;Park Myong-Soon
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.843-850
    • /
    • 2004
  • As mobile devices prevail, requests for various services using mobile devices have increased. Requests for application services that require large data space such as multimedia, game and database [1] specifically have greatly increased. However, mobile appliances have difficulty in applying various services like a wire environment, because the storage capacity of one is not enough. Therefore, research (5) which provides remote storage service for mobile appliances using iSCSI is being conducted to overcome storage space limitations in mobile appliances. But, when iSCSI is applied to mobile appliances, iSCSI I/O performance drops rapidly if a iSCSI client moves from the server to a far away position. In the case of write operation, $28\%$ reduction of I/O performance occurred when the latency of network is 64ms. This is because the iSCSI has a structural quality that is very .sensitive to delay time. In this paper, we will introduce an intermediate target server and localize iSCSI target to improve the shortcomings of iSCSI performance dropping sharply as latency increases when mobile appliances recede from a storage server.