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Abstract: The current multihome-aware protocols (like stream con-
trol transmission protocol (SCTP) or parallel TCP for concurrent
multipath data transfer (CMT) are not designed for high-capacity
and large-latency networks; they often have performance prob-
lems transferring large data files over shared long-distance wide
area networks. It has been shown that SCTP-CMT is more sen-
sitive to receive buffer (rbuf) constraints, and this rbuf-blocking
problem causes considerable throughput loss when multiple paths
are used simultaneously. In this research paper, we demonstrate
the weakness of SCTP-CMT rbuf constraints, and we then iden-
tify that rbuf-blocking problem in SCTP multihoming is mostly
due to its loss-based nature for detecting network congestion. We
present a simulation-based performance comparison of FAST TCP
versus SCTP in high-speed networks for solving a number of
throughput issues. This work proposes an end-to-end transport
layer protocol (i.e., FAST TCP multihoming as a reliable, delay-
based, multihome-aware, and selective ACK-based transport pro-
tocol), which can transfer data between a multihomed source and
destination hosts through multiple paths simultaneously. Through
extensive ns-2 simulations, we show that FAST TCP multihoming
achieves the desired goals under a variety of network conditions.
The experimental results and survey presented in this research also
provide an insight on design decisions for the future high-speed
multihomed transport layer protocols.

Index Terms: Concurrent multipath transfer (CMT), FAST TCP,
multihoming, receiver buffer (rbuf), stream control transmission
protocol (SCTP).

I. INTRODUCTION

The Internet is a large group of millions of computers around
the world that are all connected to one another and transmit
data by packet switching based on the TCP/IP protocol suite.
Although the current stability of the Internet largely relies on
TCP’s end-to-end congestion control mechanism, this classical
protocol (which still constitutes the basis of today’s Internet) has
reached its limits of scalability and functionality. The Internet,
due to its huge growth, complexity, and popularity, now con-
tinuously experiences modifications and changes in almost all
aspects. There has been very fast progress in the area of grid [1],
peer-to-peer, and distributed applications, although not much at-
tention has not been focused to guarantee that the huge amount
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of data produced by such applications can be transferred and
shared effectively over the wide area networks. In particular, a
significant issue in the approach of high-speed grid applications
[2] is network transport. It means an efficient and proper trans-
port protocol is required to facilitate the capacity offered by such
high-bandwidth long-distance network infrastructures.

In this context, it is important to address the performance
problems of the current loss-based congestion control proto-
cols (like TCP [3] and stream control transmission protocol
(SCTP) [4], [5]) over large bandwidth-delay product paths when
doing huge data transfers. The researchers realize that these
protocols’s somewhat naive congestion control approaches will
quickly happen to be incompetent of successfully utilizing the
network resources under extremely high-capacity and congested
network environments, which motivates the design of new dis-
tributed algorithms for large delay-bandwidth product networks
(i.e., FAST TCP [6]). The additive increase/multiplicative de-
crease (AIMD) [7] principal of TCP and SCTP protocols leads
to potentially violent oscillations in window sizes, round-trip
delay, and queue length of the bottleneck node, which could
clearly impact the overall efficiency of the network connection.

While FAST TCP’s delay-based approach [6] avoids such
limitations; it aims to provide an overhaul to the loss-based
AIMD algorithms by using not only queuing-delay but also
packet loss as a metric to sense network congestion, because
queuing-delay gives a better estimation of congestion and bal-
ances more efficiently with the available link-capacity of the
network than packet-loss probability does [6] (which results in
efficient link utilization).

Concurrent multipath transfer (CMT) is another promising
approach for improving the consistency of the Internet connec-
tions, building healthier use of end-to-end multihoming, and uti-
lizing the additional network capacity for improved application
throughput. The SCTP supports CMT [7] between end-to-end
multihomed hosts, while the standard TCP [3] and its variant
(i.e., FAST TCP) do not support multihoming. In the early days
of the Internet, extensive use of multihoming was not practicable
for the reason of cost constraints, but nowadays, network inter-
faces have become ordinary and affordable items. We deem that
in the near future, most Internet hosts will be multihomed, and
so multihoming should be supported all across the Internet.

Thus, we believe that a transport protocol right for bulk data
transfers/shares efficiently over the future high-speed optical
networks (such as in highly dynamic environments like peer-to-
peer and wide-area grid computing [2]) should take full advan-
tage of the above approaches (i.e., end-to-end multihoming and
high-speed algorithm like FAST TCP). It means to improve the
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performance and reliability of increasingly bandwidth-greedy
applications, and new design schemes for the protocols for the
identified future networks problems will be proposed (or one
way of achieving this goal is to embed multihoming capability
within an existing transport protocol such as FAST TCP).

The remainder of this paper is organized as follows.
Section II motivates FAST TCP used for multihoming by
demonstrating the advantages of replacing loss-based approach
with delay-based approach as the end-to-end transport-layer
congestion control mechanism. In this section, we also present
our simulation setup with network topologies simulated using
ns-2 simulator [8], analyze the behavior of FAST TCP compared
to SCTP, delineate the receive buffer (rtbuf) blocking problems in
SCTP-CMT [9], and identify the dilemma degrading its perfor-
mance in the presence of a bounded rbuf. In Section III, we first
introduce the key insight into the design and layout architecture,
including an outline of our proposed algorithms for multihom-
ing implementation using FAST TCP. Next, we present a perfor-
mance analysis of FAST TCP multihoming by using a particu-
lar network scenario in ns-2 to prove its efficiency in producing
high end-to-end throughput in multiple path environments. Fi-
nally, in Section IV, we present the conclusions.

II. MOTIVATION FOR MULTIHOMING
IMPLEMENTATION USING FAST TCP

A. SCTP versus FAST TCP in High-Speed Networks (Loss-
Based versus Delay-Based Approach)

In this section, we present a performance comparison of
SCTP and FAST TCP protocols through simulation results and
discuss the protocols behavior. However, there have been many
works on comparisons between standard TCP and FAST TCP,
but there seems no work that directly compares FAST TCP and
SCTP (since congestion control algorithm of SCTP is almost the
same as that of the standard TCP). Since protocols performance
evaluations are addressed in several papers (e.g., [6], [10]-[14])
proposing revisions to the standard TCP’s AIMD algorithm but
with the vast deployment of high-performance grid and optical
networks, there are still continuing examinations to assess the
existing set of high-speed transport protocols to find out the best
overall protocol.

FAST TCP’s delay-based approach is essentially different
from AIMD; its aim is to utilize not just queuing delay but
also packet loss as an indication to sense congestion, and its
benefit over loss-based congestion control algorithm is small at
low-speed, but dominant at high-speed. The congestion window
(cwnd) update algorithm of FAST TCP calculates the precise
window size on the basis of the current measurement of queuing
delay whenever reliable round-trip time (RTT) estimations are
available, i.e., gdelay = avgRTT — baseRTT.

The jth RTT sample T'(j) recalculates the average RTT T*(5)
according to the following equation:

T*(j +1) = (1= ))T*(3) + nT()- W
FAST TCP periodically recalculates the cwnd on the basis of
the average queuing-delay and average RTT, according to (2),
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Fig. 2. Simulation network topology with a single bottleneck shared
by four flows, with bottleneck link capacity of 800 Mbps, a common
propagation delay of 100 ms, drop-tail queuing and the buffer size
of 3000 packets with a fixed packet length of 1500 bytes (o = 200
packets for each FAST TCP flow).

as described in [6].
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FAST TCP includes four separate components, as depicted in
Fig. 1.
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A.1 Simulation Results and Discussions

We used FAST TCP simulator module for ns-2 [15], ver-1.1
(selective ACK (SACK) introduced) and for SCTP, we used
University of Delaware’s module [16]. Fig. 2 shows the net-
work topology simulated to compare the protocols performance
in terms of queue occupancy, aggregate throughput, congestion
window, and total number of packets lost at the bottleneck link.

SCTP’s curves in Fig. 3 show that daring the slow-start phase,
there is no in-advance information of the available bandwidth
that can be exercised to stop the exponential increase of the win-
dows. Therefore, we notice that the sources increase their cwnds
until the available bandwidth is exceeded, and they use progres-
sively more buffers in the router until they lose packets by over-
flowing the bottleneck queue. We also see that as more number
of SCTP competing sources join the network, stability becomes
worse for this loss-based protocol, produces more oscillations in
its cwnds and queue size, and increases packet losses (Fig. 3) in
the network; since all these losses are only caused by congestion
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Fig. 4. FAST TCP's curves: (a) Aggregate throughput, (b

at the routers, we do not set the loss rate in our simulations.

While under same conditions, FAST TCP consistently does
better than SCTP in terms of throughput and stability with zero
packet loss at the bottleneck because each source attempts to
keep the same number of packets in the queue in equilibrium
so that each competing source equally shares the bottleneck link
bandwidth, as shown in Fig. 4, which clearly shows that FAST
achieves a better aggregate throughput (seeing as they can main-
tain the network link around full utilization).

B. Rbuf Blocking in CMT Using SCTP Multihoming
B.1 Problem Description

SCTP is a relatively new transport layer protocol that natively
supports multihoming. It is an Internet engineering task force
(IETF) standards-track protocol, which has not yet been largely
deployed in the Internet regardless of its several advantages over
standard Internet Protocols (UDP and TCP); however, research
on extending SCTP to CMT using multihoming is currently in
progress [5].

In SCTP-CMT, the multihomed receiver keeps a single rbuf,
which is shared across all the paths (subflows), and it consumes
data purely in order, regardless of the destination addresses they
are directed to. The transmission rate of an SCTP sender is
bounded by the peer-receiver window together with the relevant
destination’s congestion window. It has been shown in [9] that
SCTP-CMT is more sensitive to rbuf constraints, which causes
considerable throughput deficiency if data is transferred through
multiple paths simultaneously.

) congestion window, (c) queue size, and (d) packet loss.

B.2 Rbuf Blocking in Concurrent Multipath Transport due to
Network Congestion-Based Losses

In this section, we study the impact of network congestion-
based losses on rbuf blocking in CMT. During the concurrent
multipath transfer of data when a path undergoes failure (due to
congestive losses or non-congestive losses), its outstanding data
has to be recovered by means of a retransmission timeout (RTO),
which in turn causes rbuf blocking for the period of the timeout;
thus, the possibilities of rbuf blocking are greater during peri-
ods of missing packet’s recovery through retransmissions. Since
each timeout results in the reduction of congestion window at
the sender and causes idle time (that is, sender not sending data)
that ultimately results in throughput degradation.

Although, several retransmissions policies [9], [17] are sug-
gested to reduce the rbuf blocking problem in SCTP-CMT at
the transport layer, rbuf blocking problem cannot be eliminated.
We also demonstrate this problem in this section through sim-
ulations and analysis of the performance of SCTP-CMT during
the occurrence of a bounded rbuf. We then identify that reduc-
ing (or eliminating) the number of packet losses will reduce the
rbuf blocking problem in SCTP-CMT, but in the real Internet, it
is not possible for the SCTP-CMT to avoid these losses (mostly,
due to congestion) due to its loss-based congestion detection
mechanisms. We then will identify and come to the conclusion
that the rbuf blocking problem in SCTP-CMT multihoming is
mostly due to its loss-based nature of detecting congestion.

B.2.a Simulation Setup. We use Univ. of Delaware’s SCTP
module [16] for our simulations; this module is currently a part
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Fig. 5. Dual-homed simulation network topology with background-traffic, active periods of the flows, and congestion-based losses over 1 Gbps/60

ms delay link.

of the latest network simulator (ns) distribution [8]. We simu-
lated a dual-dumbbell network topology with its core links hav-
ing a capacity of 1 Gbps along with a one-way propagation de-
lay of 50 ms, as illustrated in Fig. 5. The router pairs (X1,Y1)
and (X 2,Y2) are attached to three and seven édge nodes, re-
spectively. For an SCTP endpoint, one of these edge nodes is
a dual-homed node, whereas the remaining two/six nodes are
single-homed and used for introducing background-traffic over
the forward paths so as to create packet losses for the SCTP traf-
fic. '

The SCTP dual-homed nodes have a propagation delay of 5
ms, while propagation delays of the single-homed nodes are
picked at random way from the same distribution. between 5—
10 ms to simulate end-to-end propagation. delays in one direc-
tion ranging between 60 ms and 70 ms. The end-to-end one-way
propagation delay between the two dual-homed nodes is 60 ms,
and in this experiment, the router’s buffer size is set to 400 Mb
for each link (both edge and core) to support all of the active
flows because in reality, the standard router’s buffer size depends
upon the number of flows and is typically in the range of couple
of 100 Mb to Gb (this is quite common now). ;

This simulation setup includes two SCTP-CMT endpoints (a
sender S and a receiver D); S has two paths (i.e., path, and
pathy) to D, and each SCTP single-homed edging node has
a single traffic generator, which is only used for background-
traffic over the forward paths having different active flows, as
presented in Fig. 5. The SCTP-CMT dual-homed sender (S)
starts at time zero, and the simulation duration is 250 sec. We
setevery packet size to 1500 bytes, and the rbuf is sized at 1.2
Mb for the dual-homed receiver (D) with RTX-SAME retrans-
mission policy.

B.2.b Simulation Results and Discussions. To demonstrate the
rbuf blocking problem, an extract is presented from the SCTP-
CMT association’s simulation using the topology depicted in
Fig. 5. Figs. 6(a) and 6(b) present the results for transmission
sequence number progression over path; and path,, respec-

tively. Fig. 6(c) presents the peer-receiver window evolution dur-
ing the time interval from 135 to 165 s at the sender (S) endpoint.
Fig. 7 shows the SCTP-CMT sender’s (S) observed cwnds evo-
Iution for the whole association (path; and path,) during the
period of the 250 s simulation run, which shows a number of
cwnds reductions for both the paths, e.g., cwnd for path; is
halved at times 21.66, 24.96, 30.38, etc. Congestion window
reductions are noticed as a sender finds loss; however, for path,
(from Fig. 6(a)), no packet loss is observed (not even a sin-
gle packet loss is noticed throughout the 250 s simulation run),
and it is also observed that data transmission over the path,
(less congested path) discontinues at different times during the
250 s simulation run; for example, it stops unexpectedly around
145.75 s and starts again around 148.95 s. Fig. 6(c) presents
the results to explain this 3.2 s pause, which reveals that at time
145.75s, the peer-receiver window unexpectedly decreases to
644 bytes at the sender S (as an SCTP-CMT sender shares a sin-
gle finite rbuf across all paths), thus constraining it from sending
any new data through any path.

The reason for this surprising rbuf reduction is that path,
(i.e., the highly congested path) experiences a severe conges-
tion during the same time interval from 145.75 to 148.95 s, pro-
ducing, as a result, consecutive packets losses (that only occur
because of congestion under a simple level of forward-path traf-
fic), as shown in Fig. 6(b). The sender starts to recover path,
from these losses via repeated RTOs; meanwhile, the receiver
awaits retransmissions to arrive and holds some of the subse-
quent transmission sequence numbers in the rbuf, which were
transmitted over the path; and are not delivered to the appli-
cation until the retransmissions are obtained, resulting in the
blocking of the rbuf as well as the peer-receiver window.

path, (the highly congested path) is the main source of rbuf
blocking in SCTP-CMT, and this is due to the lack of correla-
tion between the level of background traffic and the SCTP-CMT
window size over the path,. Moreover, it is observed that at
time around 202.8 s, the peer-receiver window reduces to zero
bytes at the sender S and never recovers from losses, not even
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through repeated RTOs; this is due to back-to-back timeouts
with an exponential back off resulting in permanent blocking
of the rbuf.

In contrast, Figs. 3 and 4 (in Section II-A) clearly show that
FAST TCP’s congestion avoidance mechanisms at work has the
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ability to anticipate congestion and adjusts its transmission rate
accordingly in such a way that there are lirtle or no losses.
Therefore, we argue that under CMT (which uses two congested
paths), FAST TCP will perform much better than SCTP in high-
speed multihomed networks under the same finite rbuf size due
to its delay-based congestion control mechanisms. To end with,
we motivate the delay-based approach (i.e., FAST TCP) as a
congestion control mechanism used for implementing end-to-
end transport-layer multihoming for parallel data transfer (in
high-speed long-distance networks) rather than other loss-based
congestion control protocols.

III. FAST TCP MULTIHOMING PROPOSED DESIGN
AND ALGORITHMS

In this section, we first go over the main points of research on
existing techniques of transport-layer multihoming, which have
been discussed in [5], [18]-{20], etc.

Table 1, thus, summarizes some existing mechanisms of the
SCTP-CMT multihoming approach along with the proposed key
mechanisms for FAST TCP multihoming.

Now, it is important to propose the key design elements of
FAST TCP multihoming in such a way that it will provide the
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Table 1. Overview of SCTP-CMT/FAST TCP multihoming approach.

Review of

Proposed FAST
Mechanism Issue SCTP-CMT TCP multihoming
muitihoming h
approach approac]
Congestion Separate or  Each path has its Each path has its
control for shared? own loss-based own delay-based
multiple paths congestion control  congestion control
mechanism mechanism
Receiver’s Shared Receiver maintains  Same as
advertised buffer or a single tbuf, SCTP-CMT
window (rwnd)  individual which is shared
at the sender for  buffer for across all subflows
multiple paths  each path? (paths) in an
association
Sequence space Separate or A single sequence  Same as
among flows on  shared? space is used SCTP-CMT
different paths across an
that occur association’s
within an multiple paths
association
Loss detection ~ Separateor  Fast retransmit Split estimation
and recovery shared fast algorithm (en a per  component (SEC)
retransmnit destination basis)  algorithms for
algorithm? multiple paths
Reverse path Where to Normally SACKs  SACKs return
for senda return- over the over the same path
acknowledgem- SACK? . ° same pathto which to which they
ents they were were originally
originaily sent sent
Retransmission ~ Where to Using CMT Over the same
path send a retransmissions path to which it
retransmissi-  policies was originally sent
on?

same semantics to applications as simple FAST TCP—it will
preserve the properties such as stability, fairness, reliability, and
responsiveness. Thus, some key design elemenits are as follows:

e Since FAST TCP multihomed sender host sends data
through multiple paths concurrently and different paths have
different delay and/or bandwidth characteristics, each path
needs to have its own window control mechanism, like a
simple FAST TCP [6]. This means each path needs its own
estimation component module (like FAST TCP) to estimate
RTT, remember which packets it has sent, and match each
received ACK with one of these packets.

¢ Each path maintains a cwnd as in simple FAST TCP. The
cwnd changes independently as the path adapts to the net-
work state (i.e.,, FAST TCP periodically recalculates the
cwnd on the basis of the average queuing-delay and avgRTT
provided by the estimation component, according to (3)).

s In our current design, we use a single sequence space across
the multiple paths of an association that is used for conges-
tion control as well as loss detection and recovery. The mul-
tihomed sender maintains a set of per path virtual queues
and spreads the packets across all available paths; immedi-
ately, the congestion window allows it. Retransmissions are
prompted only when a number of SACKs (generally three
duplicate acknowledgements) report the missing data pack-
ets from the same virtual queue.

e In our current prototype, the FAST TCP multihomed re-
ceiver maintains and shares a single rbuf across all the paths
within an association. In this way, the FAST TCP multi-
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homed sender divides the global advertised window among
all its subflows (paths) proportional to their congestion win-
dow sizes.

As on the reception of an acknowledgement, FAST TCP
updates its cwnd on the basis of the queuing delay, ie.,
qdelay = avgRTT — baseRTT according to (2); hence, we
have to keep a steady stream of SACKs from new transmis-
sions with the aim of obtaining unambiguous-RTT measure-
ments. This is generally possible only when all ACKs re-
turn over the same path to which they were originally sent.
Thus, in this proposed design, although the data is trans-
ferred through multiple paths concurrently, all the SACKs
return over the same path to which they were originally sent.

In the next section, we describe the overall architecture of

FAST TCP multihoming with its different components and al-
gorithms that will make simultaneous data transfer through
multiple paths possible for achieving the maximum end-to-end
throughput.

A. Component Design and Algorithms

We reviewed and discussed some issues in our effort to pro-

pose such a transport-layer multihome-aware protocol that is
based on FAST; hence, first, the simple FAST’s estimation, data
control, burstiness confrol, and window control mechanisms
need to be modified to completely take advantage of the ben-
efits that FAST TCP multihoming has to offer.



ARSHAD AND SALEEM: A SIMULATION-BASED STUDY OF FAST TCP COMPARED... 281

On receiving a positive acknowledgement (a SACK carries a new ACK) [Processing at sender side]:

1) Let p; to be the complete set of paths from source to destination.
V paths p;, initialize p.SACK_received_path = FALSE;

2) For each data packet s, that is acknowledged in SACK thus far do
let pa be the path on which SACK is received; /*i.e., a path on which sa was originally sent. */
set p..SACK_received_path = TRUE;

[Parameter estimation for the path on which SACK is received)]:

3) For each path p;
if (p.SACK_received_path == TRUE) then
(i) get average cwnd size (one average RTT ago) which will be used as a history record;
(i) calculate the new average RTT as per (2) which will be used to estimate queueing delay for the path pa;
(iii) estimate the average queueing delay as per (1) for the path pa which will be used
to calculate the new cwnd size as per (3) in every update;
(iv) provide this information to the other three decision-making components of the relevant path pa;

/* estimate/update the average RTT, average queueing delay and minimum RTT (as in simple FAST TCP [6]) for one of the muitiple paths. */

(a)

On receiving a negative acknowledgement (a SACK containing gap reports) [Processing at sender side]:
1) Let p;to be the complete set of paths from source to destination.
\v paths p;, initialize p;.lookingfor_newack = FALSE;
2) For each receipt of duplicate ACK (i.e. SACK containing gap reports) for a data packet s,, thus far do

let p,be the path on which a duplicate ACK for s, is received; /* i.e. a path on which s, was originally sent. */
set pa.fookingfor_newack = TRUE;

3) V paths p;, set prlargest_in_SACK_for_path to the largest sequence number being recently acknowledged on p;.
4) To check whether duplicate acknowledgement (dupACK) total for the data packet s, should be increased and
then to determine whether missing data packet s, should be retransmitted:
if ( pa.lookingfor_newack == TRUE ) and ( p,.largest_in_SACK_for_path> s,) then
(i) increment dupACK count for s,;
(i) if ( dupACK count for s, == 3 (dupthresh) ) then
generate a loss signal for the data packet s, to remaining components of the
relevant path p; (i.e., to retransmit each unacknowledged data packet right away
or hold off until a more appropriate time);
(i) else if ( dupACK count for s; < 3 ) then
(a) set p..SACK _received_path = TRUE;
(b) estimate/update the average RTT, average queueing delay and minimum RTT (through SEC:
Step (3) in Fig. 9 (a)) for the path p, and provide this information to the other three
decision-making components;

else dupACK count for s, is not incremented;

(®)

Fig. 9. SEC algorithm: (a) When a positive acknowledgement is received and (b) when a negative acknowledgement is received.

FAST’s essential congestion control mechanisms are com-
pactly summarized in Fig. 1, showing that FAST TCP includes
four independent components, allowing each component to be
modified individually and updated separately. We initially pro-
posed the split estimation component (SEC) algorithms to im-
plement multihoming options in FAST TCP.

Fig. 8 presents an architectural overview of the FAST TCP
multihoming approach. Some modifications made on simple
FAST TCP are as follows:

1) A path selector at the sender,
ii) a data dispatcher at the sender, and
ii1) the virtual send/receive buffers at each sender/receiver end.

For each packet transmitted to a specific path selected by the
path selector, the SEC records a time-stamp, and the burstiness
control component updates corresponding data structures for ac-
counting. Ata constant time interval, that is checked by the SEC
on the arrival of each acknowledgment over a specific path. At
the sender end, it is the responsibility of data-dispatcher to as-
sign the striped data, which are to be sent out over the paths

selected by the path selector in a FAST TCP multihoming asso-
ciation.

A.1 Estimation Component for Multiple Paths—(SEC)

Algorithms: Estimation is one of the core components of the
FAST TCP’s congestion control mechanism, is capable of pro-
viding different input parameters estimations and passing them
to the remaining three components.

In our proposed system, each path has its own four indepen-
dent components (i.e., estimation, window control, burstiness
control, and data control), as shown in Fig. 8. For example, con-
sider that some data packets are sent through one of the multiple
paths (i.e., pa); its SEC calculates two bits of feedback informa-
tion for each data packet sent. On receiving a +ACK over the
path (pa), it determines the RTT for the pertinent data packet
and recalculates the minimum RTT and average queuing delay
(including the virtnal send buffer) for the path (pa). When a—
ACK (on the receipt of dupACK < 3 or timeout) is received, it
checks and if the dupACK is less than three, it behaves normally
(as on receiving a positive ACK); if dupACK is equal to three,
it creates a loss signal for this data packet to the further compo-
nents of the relevant path (pa) as given in proposed algorithm
(Fig. 9(b)).
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Fig. 11. FAST TCP multihoming evaluation (when no background traffic (Fig. 5)) under a bounded receive buffer (i.e., 1.2 Mb): (a) CMT's throughputs

achieved over both the links, {b) CMT’s sender {S) cwnds evolution over both the paths (path; and path,), and {c) transmission sequence

number progression over both the paths (path, and path,).

We split the Estimation Component into two parts, one part
is used to handle positive acknowledgement (on arrival of the
SACK carries a new ACK) and other part is used to handle neg-
ative acknowledgment (on arrival of a SACK containing gap re-
ports) through one of the multiple paths.

Algorithm details: Figs. 9(a) and 9(b) show the proposed SEC
algorithms for multiple paths, which use SACKSs, and determine
the path on which each acknowledgement (positive or negative)
is received. SEC computes the RTT for the pertinent data packet
and recalculates the minimum RTT and average queueing delay
for the path on which the SACK is received. SEC algorithms
use three more variables for each path at a multihomed sender.

SACK _received_path: A variable employed for the period of
a SACK-handling to deduce the contributory data packet(s)’s
path(s) (i.e., used to determine on which path the SACK is re-
ceived).

largest_in_SACK_for_path: This variable is used to store the
largest sequence number for a data packer acknowledged per
path by the SACK being processed.

lookingfor_newack: A variable employed for the period of
a SACK-handling to deduce the contributory data packet(s)’s
path(s) (i.e., used to determine on which path the SACK (con-

taining gap reports) is received).

In Fig. 9(a), step (1) sets SACK_received_path to TRUE for
the paths on which the SACKSs (carries a new ACK) are received.
Step (2) uses information collected in step (1) and estimates
the different parameters values, that will be used to calculate
the new congestion window size by the window control compo-
nent for the path whose flag (i.e., SACK_received_path) value is
TRUE.

In Fig. 9(b), step (1) assigns TRUE value to the looking-
for_newacks variable for the paths on which SACKSs (containing
gap reports) are received. For each path, step (2) determines the
largest sequence number data packet being acked. In step (4),
the details collected through steps (1) and (2) are exercised to
deduce the absent data packet for which a dupACK is received.

B. Performance Evaluation and Assumptions

In this section, the performance of the FAST TCP multihom-
ing is evaluated using the same topology shown in Fig. 5. We
did not implement the initial negotiation phase of a FAST TCP
multihoming connection since we believe this is not the limiting
factor for end-to-end performance, and we are more addicted to
the performance aspect of FAST TCP multihoming.
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Figs. 1012 show the trajectories (throughput, cwnd, and se-
quence number progression) of FAST TCP multihoming under
varying network conditions. Referring to Figs. 7 and 10 (Sec-
tion II-B), it can be observed that the two paths having different
traffic-load distribution do not impact the relative performance
of FAST TCP multihoming due to its delay-based congestion
control mechanisms, while the SCTP-CMT multihomed sender,
due to insufficient information, is unable to make informed as-
sessments about the network congestion to adjust its sending
rate so as to avoid losses, and hence, from rbuf blocking (i.e., it
stops sending data (Fig. 7) at time around 202.8 s when 1.2 Mb
rbuf is used). Referring to topology shown in Fig. 5, we also ob-
served that SCTP-CMT multihomed sender stops sending data
too early when using rbuf sizes of 1 Mb, 2 Mb, and 3 Mb or
even with a reasonably large value (i.e., 10 Mb); rbuf blocking
is not eliminated. However, in the case of FST TCP, when pack-
ets are sent through multiple paths (having different traffic-load
distribution) simultaneously to the destination using end-to-end
multihoming, the packets are highly likely to arrive in the order
in which they were initially sent (preventing rbuf from blocking).

Referring to Figs. 11 and 12, it is possible to see that FAST
TCP multihomed sender sends data up to the congestion win-
dow size value (as corresponding cwnds for each path allow)
and then waits for ACKs to put more data onto the network by
updating its congestion window on the basis of queuing delay
according to (1). These results also verify that FAST TCP multi-
homing for end-to-end data transfer through multiple paths con-
currently can effectively aggregate the bandwidth available on
all the paths (i.e., two paths).

IV. CONCLUSIONS

In this research paper, we have proposed an end-to-end trans-
port layer protocol (i.e., FAST TCP multihoming as a reliable,
delay-based, SACK-based, and multihome-aware transport pro-
tocol) which can transfer data between a multihomed source
and destination hosts through multiple paths simultaneously. We
have redesigned the FAST TCP ns-2 module and proposed the
algorithms to implement the end-to-end multihoming features
into FAST TCP, with the goal of improving end-to-end through-

put. We have described its architecture from design to imple-
mentation.

In this study, we have addressed two important topics: one
is transport layer multihoming, which is essential for the aggre-
gation of global routing table, and another is the long-fat-pipe
problem, which more and more transport connections are suf-
fering from. We demonstrated the weakness of SCTP-CMT rbuf
constraints, and we then exposed that the rbuf blocking problem
in SCTP-CMT multihoming was mostly due to its loss-based
nature for detecting network congestion. .

In this work, we have conducted simulations to illustrate
the concept and to evaluate the performance of FAST TCP
multihoming compared to SCTP-CMT in high-speed networks
(ns-2), and via these simulations, we have shown that FAST
TCP multihoming outperforms SCTP-CMT under similar net-
work conditions. Therefore, we conclude that FAST TCP is bet-
ter suited as a transport-layer protocol for parallel data transfer
through multiple paths using end-to-end multihoming because
of its several distinct features that are not present in TCP and
SCTP. The results of our initial efforts are encouraging, but there
are several avenues for future work.
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