• Title/Summary/Keyword: Latency sensitive

Search Result 65, Processing Time 0.024 seconds

Reservation based Resource Management for SDN-based UE Cloud

  • Sun, Guolin;Kefyalew, Dawit;Liu, Guisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5174-5190
    • /
    • 2016
  • Recent years have witnessed an explosive growth of mobile devices, mobile cloud computing services offered by these devices and the remote clouds behind them. In this paper, we noticed ultra-low latency service, as a type of mobile cloud computing service, requires extremely short delay constraints. Hence, such delay-sensitive applications should be satisfied with strong QoS guarantee. Existing solutions regarding this problem have poor performance in terms of throughput. In this paper, we propose an end-to-end bandwidth resource reservation via software defined scheduling inspired by the famous SDN framework. The main contribution of this paper is the end-to-end resource reservation and flow scheduling algorithm, which always gives priority to delay sensitive flows. Simulation results confirm the advantage of the proposed solution, which improves the average throughput of ultra-low latency flows.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

Content-Aware D2D Caching for Reducing Visiting Latency in Virtualized Cellular Networks

  • Sun, Guolin;Al-Ward, Hisham;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.514-535
    • /
    • 2019
  • Information-centric networks operate under the assumption that all network components have built-in caching capabilities. Integrating the caching strategies of information centric networking (ICN) with wireless virtualization improves the gain of virtual infrastructure content caching. In this paper, we propose a framework for software-defined information centric virtualized wireless device-to-device (D2D) networks. Enabling D2D communications in virtualized ICN increases the spectral efficiency due to reuse and proximity gains while the software-defined network (SDN) as a platform also simplifies the computational overhead. In this framework, we propose a joint virtual resource and cache allocation solution for latency-sensitive applications in the next-generation cellular networks. As the formulated problem is NP-hard, we design low-complexity heuristic algorithms which are intuitive and efficient. In our proposed framework, different services can share a pool of infrastructure items. We evaluate our proposed framework and algorithm through extensive simulations. The results demonstrate significant improvements in terms of visiting latency, end user QoE, InP resource utilization and MVNO utility gain.

A Solution for Reducing Transmission Latency through Distributed Duty Cycling in Wireless Sensor Networks (무선 센서 네트워크에서 수신구간 분산 배치를 통한 전송지연 감소 방안)

  • Kim, Jun-Seok;Kwon, Young-Goo
    • 한국ITS학회:학술대회논문집
    • /
    • v.2007 no.10
    • /
    • pp.225-229
    • /
    • 2007
  • Recently, wireless sensor networks are deployed in various applications range from simple environment monitoring systems to complex systems, which generate large amount of information, like motion monitoring, military, and telematics systems. Although wireless sensor network nodes are operated with low-power 8bit processor to execute simple tasks like environment monitoring, the nodes in these complex systems have to execute more difficult tasks. Generally, MAC protocols for wireless sensor networks attempt to reduce the energy consumption using duty cycling mechanism which means the nodes periodically sleep and wake. However, in the duty cycling mechanism. a node should wait until the target node wakes and the sleep latency increases as the number of hops increases. This sleep latency can be serious problem in complex and sensitive systems which require high speed data transfer like military, wing of airplane, and telematics. In this paper, we propose a solution for reducing transmission latency through distributed duty cycling (DDC) in wireless sensor networks. The proposed algorithm is evaluated with real-deployment experiments using CC2420DBK and the experiment results show that the DDC algorithm reduces the transmission latency significantly and reduces also the energy consumption.

  • PDF

Dynamic Resource Reservation for Ultra-low Latency IoT Air-Interface Slice

  • Sun, Guolin;Wang, Guohui;Addo, Prince Clement;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3309-3328
    • /
    • 2017
  • The application of Internet of Things (IoT) in the next generation cellular networks imposes a new characteristic on the data traffic, where a massive number of small packets need to be transmitted. In addition, some emerging IoT-based emergency services require a real-time data delivery within a few milliseconds, referring to as ultra-low latency transmission. However, current techniques cannot provide such a low latency in combination with a mice-flow traffic. In this paper, we propose a dynamic resource reservation schema based on an air-interface slicing scheme in the context of a massive number of sensors with emergency flows. The proposed schema can achieve an air-interface latency of a few milliseconds by means of allowing emergency flows to be transported through a dedicated radio connection with guaranteed network resources. In order to schedule the delay-sensitive flows immediately, dynamic resource updating, silence-probability based collision avoidance, and window-based re-transmission are introduced to combine with the frame-slotted Aloha protocol. To evaluate performance of the proposed schema, a probabilistic model is provided to derive the analytical results, which are compared with the numerical results from Monte-Carlo simulations.

An improvement of Medium Access Control Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크의 매체 접근 제어 기법에 대한 개선 방안)

  • Jang, Ho;Lee, Myung-Sub;Jeon, Woo-Sang
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.373-382
    • /
    • 2009
  • we present more efficient method of a medium access for real-time ubiquitous sensor networks. Proposed MAC protocol is like the randomized CSMA/CA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports from sensor nodes, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to several times latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using a widely-used network simulation package, NS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time ubiquitous sensor networks which is sensitive to latency.

Congestion Control Mechanism for Efficient Network Environment in WMSN (무선 멀티미디어 센서 네트워크에서 효율적인 네트워크 환경을 위한 혼잡 제어 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • Wireless multimedia sensor network senses and transfers mass multimedia data. Also, it is sensitive to latency. This thesis proposes a routing technique based on traffic priority in order to improve the network efficiency by minimizing latency. In addition, it proposes a congestion control mechanism that uses packet service time, packet inter-arrival time, buffer usage, etc. In this thesis, we verified the reduction of packet latency in accordance with the quality level of packet as a result of the performance analysis through the simulation method. Also, we verified that the proposed mechanism maintained a reliable network state by preventing packet loss due to network overload.

Research Trend in 5G-TSN for Industrial IoT (Industrial IoT를 위한 5G-TSN 기술 동향)

  • Kim, K.S.;Kang, Y.H.;Kim, C.K.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.43-56
    • /
    • 2020
  • The 5G system standardization body has been developing standard functions to provide ultra-high speed, ultra-high reliability, ultra-low latency, and ultra-connected services. In 3GPP Rel-16, which was recently completed, this system has begun to develop ultra-high reliability and ultra-low latency communication functions to support the vertical industry. It is expected that the trend in the adoption of mobile communication by the vertical industry will continue with the introduction of 5G. In this paper, we present the industrial Internet-of-Things (IIoT) service scenarios and requirements for the adoption of 5G systems by the vertical industry and the related standardization trend at present. In particular, we introduce the 5G time-sensitive networking standard technology, a core technology for realizing 5G-based smart factories, for IIoT services.

A CRL Distribution Scheme Minimizing the Time for CRL Processing of Vehicles on Vehicular Communications

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.73-80
    • /
    • 2018
  • Certification revocation list(CRL) is needed for excluding compromised, faulty, illegitimate vehicle nodes and preventing the use of compromised cryptographic materials in vehicular communications. It should be distributed to vehicles resource-efficiently and CRL computational load of vehicles should not impact on life-critical applications with delay sensitive nature such as the pre-crash sensing that affords under 50msec latency. However, in the existing scheme, when a vehicle receives CRL, the vehicle calculates linkage values from linkage seeds, which results in heavy computational load. This paper proposes, a new CRL distribution scheme is proposed, which minimizes the time for CRL processing of vehicles. In the proposed scheme, the linkage value calculation procedure is performed by road-side unit(RSU) instead of the vehicle, and then the extracted linkage values are relayed to the vehicle transparently. The simulation results show that the proposed scheme reduces the CRL computational load dramatically, which would minimize impact on life-critical applications' operations with low latency.

Task Scheduling in Fog Computing - Classification, Review, Challenges and Future Directions

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.89-100
    • /
    • 2022
  • With the advancement in the Internet of things Technology (IoT) cloud computing, billions of physical devices have been interconnected for sharing and collecting data in different applications. Despite many advancements, some latency - specific application in the real world is not feasible due to existing constraints of IoT devices and distance between cloud and IoT devices. In order to address issues of latency sensitive applications, fog computing has been developed that involves the availability of computing and storage resources at the edge of the network near the IoT devices. However, fog computing suffers from many limitations such as heterogeneity, storage capabilities, processing capability, memory limitations etc. Therefore, it requires an adequate task scheduling method for utilizing computing resources optimally at the fog layer. This work presents a comprehensive review of different task scheduling methods in fog computing. It analyses different task scheduling methods developed for a fog computing environment in multiple dimensions and compares them to highlight the advantages and disadvantages of methods. Finally, it presents promising research directions for fellow researchers in the fog computing environment.