• Title/Summary/Keyword: Lasso

Search Result 169, Processing Time 0.029 seconds

Genomic Selection for Adjacent Genetic Markers of Yorkshire Pigs Using Regularized Regression Approaches

  • Park, Minsu;Kim, Tae-Hun;Cho, Eun-Seok;Kim, Heebal;Oh, Hee-Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1678-1683
    • /
    • 2014
  • This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been applied to animals as well as plants, especially to pigs. For efficient selection of variables with specific traits in pig breeding, it is required that any such variable selection retains some properties: i) it produces a simple model by identifying insignificant variables; ii) it improves the accuracy of the prediction of future data; and iii) it is feasible to handle high-dimensional data in which the number of variables is larger than the number of observations. In this paper, we applied several variable selection methods including least absolute shrinkage and selection operator (LASSO), fused LASSO and elastic net to data with 47K single nucleotide polymorphisms and litter size for 519 observed sows. Based on experiments, we observed that the fused LASSO outperforms other approaches.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Analysis of the relationship between regional economic growth and obesity by using Lasso Regression (Lasso Regression을 이용한 지역 경제 성장과 비만율의 상관관계 분석)

  • Kil, Eungyu;OH, Sujin;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.565-568
    • /
    • 2018
  • 본 연구에서는 Lasso Regression을 기반으로 하여 지역 경제 성장과 비만율을 예측한다. 연구는 3단계로 나누어 진행된다. 우선 지역성장을 대변할 수 있는 가상의 GDP 수치를 구한다. 그 다음 가상의 GDP 수치와 비만율 데이터를 이용하여 학습모델을 만든다. 마지막으로 이전의 데이터를 이용하여 앞으로의 성장을 예측하고 학습모델에 적용하여 비만율을 예측한다. 본 연구의 데이터는 학습데이터와 실험데이터를 구성된다. 학습데이터로는 국내의 8도 중 하나인 강원도의 데이터를 이용하며 실험데이터로는 강릉과 원주의 데이터를 이용한다. 평가 비교 대상으로는 과거의 흐름을 반영하는 최소자승법 예측기법을 선정하여 비교한다. 연구 결과 강릉의 경우 비교 데이터와의 오차율 평균은 1.22%로 큰 차이가 없음을 알 수 있다. 따라서 본 연구에서 제안하는 방법이 과거의 흐름을 기반으로 작성됨을 알 수 있다. 하지만 단순히 과거의 흐름만을 통해 예측하는 것은 여러 요소가 복합적으로 작용하는 비만율 예측에 알맞지 않기 때문에 본 연구 방법이 유의미하다고 여겨진다.

Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data (frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료)

  • Kim, Bohyeon;Ha, Il Do;Noh, Maengseok;Na, Myung Hwan;Song, Ho-Chun;Kim, Jahae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.965-976
    • /
    • 2015
  • Determining relevant variables for a regression model is important in regression analysis. Recently, a variable selection methods using a penalized likelihood with various penalty functions (e.g. LASSO and SCAD) have been widely studied in simple statistical models such as linear models and generalized linear models. The advantage of these methods is that they select important variables and estimate regression coefficients, simultaneously; therefore, they delete insignificant variables by estimating their coefficients as zero. We study how to select proper variables based on penalized hierarchical likelihood (HL) in semi-parametric frailty models that allow three penalty functions, LASSO, SCAD and HL. For the variable selection we develop a new function in the "frailtyHL" R package. Our methods are illustrated with breast cancer survival data from the Medical Center at Chonnam National University in Korea. We compare the results from three variable-selection methods and discuss advantages and disadvantages.

Penalized least distance estimator in the multivariate regression model (다변량 선형회귀모형의 벌점화 최소거리추정에 관한 연구)

  • Jungmin Shin;Jongkyeong Kang;Sungwan Bang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In many real-world data, multiple response variables are often dependent on the same set of explanatory variables. In particular, if several response variables are correlated with each other, simultaneous estimation considering the correlation between response variables might be more effective way than individual analysis by each response variable. In this multivariate regression analysis, least distance estimator (LDE) can estimate the regression coefficients simultaneously to minimize the distance between each training data and the estimates in a multidimensional Euclidean space. It provides a robustness for the outliers as well. In this paper, we examine the least distance estimation method in multivariate linear regression analysis, and furthermore, we present the penalized least distance estimator (PLDE) for efficient variable selection. The LDE technique applied with the adaptive group LASSO penalty term (AGLDE) is proposed in this study which can reflect the correlation between response variables in the model and can efficiently select variables according to the importance of explanatory variables. The validity of the proposed method was confirmed through simulations and real data analysis.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Variable selection in Poisson HGLMs using h-likelihoood

  • Ha, Il Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1513-1521
    • /
    • 2015
  • Selecting relevant variables for a statistical model is very important in regression analysis. Recently, variable selection methods using a penalized likelihood have been widely studied in various regression models. The main advantage of these methods is that they select important variables and estimate the regression coefficients of the covariates, simultaneously. In this paper, we propose a simple procedure based on a penalized h-likelihood (HL) for variable selection in Poisson hierarchical generalized linear models (HGLMs) for correlated count data. For this we consider three penalty functions (LASSO, SCAD and HL), and derive the corresponding variable-selection procedures. The proposed method is illustrated using a practical example.

Effects of Pre-Emergence Herbieide for Control of Lawn Weeds (잡초 출아전 토양처리용 제초제의 처리가 잔디밭 잡초 방제 효과에 관한 연구)

  • 이명선
    • Asian Journal of Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.65-69
    • /
    • 1988
  • This experiment was conducted to study the effects of herbicides and their damages to lawn plant for the control of lawn weeds using pre-emergence granule herbicide at the two years old lawn field. The results obtained are summarized as follows. 1)Herbicidal damages to lawn grass were observed at the higher concentration than the recommended level in four herbicides used in this trial. The optimum dosages for the control of lawn weeds were 3-6g in Lasso, 3g in Machet, 8-24g in Simazine, and 4g in Trifluralin, respectively. 2)No herbicidal damages was observed in Simazine treatment, whereas Lasso and Machet treatment showed a little and severe herbicidal damages, respectively. The most severe damage was found in Trifluralin treatment, indicating that this herbicide is not suitable for the control of lawn weeds.

  • PDF

Pruning the Boosting Ensemble of Decision Trees

  • Yoon, Young-Joo;Song, Moon-Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.449-466
    • /
    • 2006
  • We propose to use variable selection methods based on penalized regression for pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are compared with the cluster pruning method. Comparative studies are performed on some artificial datasets and real datasets. According to the results of comparative studies, the proposed methods based on penalized regression reduce the size of boosting ensembles without decreasing accuracy significantly and have better performance than the cluster pruning method. In terms of classification noise, the proposed pruning methods can mitigate the weakness of AdaBoost to some degree.

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF