• Title/Summary/Keyword: Laser-induced damage

Search Result 63, Processing Time 0.03 seconds

Damage Analysis of CCD Image Sensor Irradiated by Continuous Wave Laser (연속발진 레이저에 의한 CCD 영상센서의 손상 분석)

  • Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.690-697
    • /
    • 2016
  • EOIS(electro-optical imaging system) is the main target of the laser weapon. Specially, the image sensor will be vulnerable because EOIS focuses the incident laser beam onto the image sensor. Accordingly, the laser-induced damage of the image sensor needs to be identified for the counter-measure against the laser attack. In this study, the laser-induced damage of the CCD image sensor irradiated by the CW(continuous wave) NIR(near infrared) laser was experimentally investigated and mechanisms of those damage occurrences were analyzed. In the experiment, the near infrared CW fiber laser was used as a laser source. As the fluence, which is the product of the irradiance and the irradiation time, increased, the permanent damages such as discoloration and breakdown appeared sequentially. The discoloration occurred when the color filter was damaged and then the breakdown occurred when the photodiode and substrate were damaged. From the experimental results, LIDTs(laser-induced damage thresholds) of damages were roughly determined.

The influences of laser-induced damage threshold by the post-processing of $Al_2O_3$ thin films ($Al_2O_3$ 박막의 후처리 효과가 Laser-Induced Damage Threshold에 미치는 영향)

  • 유연석;이성훈
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.387-394
    • /
    • 1997
  • The influences of laser-induced damage threshold by the after-processing of $Al_2O_3$ thin films was investigated. The samples were fabricated at the substrate temperature of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$ respectively, and the LIDT were measured by using Nd:YAG laser. After the processing with baking and laser conditioning of the samples, the variation of LIDT was measured. It was found that LIDT was enhanced twice by laser-conditioning process and 1.5 times by baking process. In addition, we measured the chemical properties of the thin film structure before and after the processing by using XPS.

  • PDF

Study of Damage in Germanium Optical Window Irradiated by a Near-infrared Continuous Wave Laser (근적외선 연속발진 레이저 조사에 의한 게르마늄 광학창 손상 연구)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • The damage in germanium (Ge) optical window irradiated by a near-infrared continuous wave (CW) laser was studied. Laser-induced heating and melting process were surveyed, and the specific laser power and the irradiance time to melt were estimated by numerical simulation. The experiments were also carried out to investigate the macro and micro structure change on Ge window. Results showed that the surface deformation was formed by melting and resolidification process, the damaged surface had a polycrystalline phase, and the transmittance as an optical performance factor in mid-infrared region was decreased. We confirmed that an abnormal polycrystalline phase and surface deformation effect such as hillock formation and roughness increase reduced the transmittance of Ge window and were the damage mechanism of CW laser induced damage on Ge window.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

Effects of Low Level Laser Treatment at LR2 and LR8 acupoint on the liver damage induced in D-GalN in rats (간경(肝經)의 형화혈(滎火穴)과 합수혈(合水穴)에 시술한 레이저침이 D-GalN 간손상 유발 흰쥐에 미치는 영향)

  • Kim, Wang-In;Youn, Dae-Hwan;Choi, Chan-Hun;Na, Chang-Su
    • Korean Journal of Acupuncture
    • /
    • v.29 no.1
    • /
    • pp.131-141
    • /
    • 2012
  • Objectives : This study was performed to investigate the effect of invasive laser acupuncture treatment at Liver Brook (LR2) acupoint and Liver Sea (LR8) acupoint on liver damage induced by D-galactosamine (D-GalN) in rats Methods : Liver damage was induced by D-GalN. The experimental rats were divided into two groups (control group, Low Level Laser Treatment (LLLT) group). Control groups were classified into small groups. Intact group had no liver damage and no treatment. D-GalN group was induced liver damage induced by D-GalN and not treated. LLLT group were induced liver damage induced by D-GalN and then treated at the LR2 or LR8 acupoint with 532, 658, 904 nm invasive laser acupuncture. The treatment was carried out three days at a time for 15days at both acupoints. To examine mechanism of the effect of invasive laser acupuncture, we measured the contents of ASP, ALT, ALP, TBIL in serum, CBC in blood and SOD in liver tissue. Results : The change of body weight increased in all groups. That change was AST and ALP, the AST activity decreased significantly compared with the control groups and decreased by 532 nm and 904 nm both LLLT groups. But ALP increased at LR8 acupoint by 658 nm. TBIL level significantly decreased in all LLLT groups. The SOD of LLLT groups increased in the liver tissue of rats compared to the control groups. SOD activity indicated that LLLT can help cellular defense mechanism by preventing scavenging hydrogen peroxide. In the change of WBC, it was increased in D-GalN Control group compared to intact group and LLLT groups. Conclusions : These results suggested that invasive laser acupuncture treatment at LR2 or LR8 acupoint reduced activation of hepatic enzyme and damage of liver tissue. Thus, the effect of invasive laser acupuncture was nearly identical to the way of the traditional acupuncture for the treatment of hepatocytotoxicity.

Study for Improvement of Laser Induced Damage of 1064 nm AR Coatings in Nanosecond Pulse

  • Jiao, Hongfei;Cheng, Xinbing;Lu, Jiangtao;Bao, Ganghua;Zhang, Jinlong;Ma, Bin;Liu, Huasong;Wang, Zhanshan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • For the conventionally polished fused silica substrate, an around 100 nm depth redeposition polishing layer was formed on the top of surface. Polishing compounds, densely embedded in the redeposition polishing layer were the dominant factor that limited the laser induced damage threshold (LIDT) of transmission elements in nanosecond laser systems. Chemical etching, super-precise polishing and ion beam etching were employed in different ways to eliminate these absorbers from the substrate. After that, Antireflection (AR) coatings were deposited on these substrates in the same batch and then tested by 1064 nm nano-pulse laser. It was found that among these techniques only the ion beam etching method, which can effectively remove the polishing compound and did not induce extra absorbers during the disposal process, can successfully improve the LIDT of AR coatings.

High-Power Continuous-Wave Laser-Induced Damage to Complementary Metal-Oxide Semiconductor Image Sensor (고출력 CW 레이저에 의한 CMOS 영상 센서의 손상 분석)

  • Kim, Jin-Gyum;Choi, Sungho;Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.105-109
    • /
    • 2015
  • This paper presents the results of an experimental analysis of the high-power laser (HPL)-induced damage to a complementary metal-oxide semiconductor (CMOS) image sensor. Although the laser-induced damages to metallic materials have been sufficiently investigated, the damages to electric-optic imaging systems, which are very sensitive to HPLs, have not been studied in detail. In this study, we experimentally analyzed the HPL-induced damages to a CMOS image sensor. A near-infrared continuous-wave (CW) fiber laser was used as the laser source. The influences of the irradiance and irradiation time on the permanent damages to a CMOS image sensor, such as the color error and breakdown, were investigated. The experimental results showed that the color error occurred first, and then the breakdown occurred with an increase in the irradiance and irradiation time. In particular, these damages were more affected by the irradiance than the irradiation time.

Effects of Laser Doping on Selective Emitter Si Solar Cells (레이져를 이용한 도핑 특성과 선택적 도핑 에미터 실리콘 태양전지의 제작)

  • Park, Sungeun;Park, Hyomin;Nam, Junggyu;Yang, JungYup;Lee, Dongho;Min, Byoung Koun;Kim, Kyung Nam;Park, Se Jin;Lee, Hae-Seok;Kim, Donghwan;Kang, Yoonmook;Kim, Dongseop
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • Laser-doped selective emitter process requires dopant source deposition, spin-on-glass, and is able to form selective emitter through SiNx layer by laser irradiation on desired locations. However, after laser doping process, the remaining dopant layer needs to be washed out. Laser-induced melting of pre-deposited impurity doping is a precise selective doping method minimizing addition of process steps. In this study, we introduce a novel scheme for fabricating highly efficient selective emitter solar cell by laser doping. During this process, laser induced damage induces front contact destabilization due to the hindrance of silver nucleation even though laser doping has a potential of commercialization with simple process concept. When the laser induced damage is effectively removed using solution etch back process, the disadvantage of laser doping was effectively removed. The devices fabricated using laser doping scheme power conversion efficiency was significantly improved about 1% abs. after removal the laser damages.

Endoscopic Laser Irradiation Condition of Urethra in Tubular Structure (관형 요도 조직 대상 내시경적 레이저 조사 조건 연구)

  • Hwarang, Shin;Seonghee, Lim;Yeachan, Lee;Hyun Wook, Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.85-91
    • /
    • 2023
  • Stress urinary incontinence (SUI) occurs when abdominal pressure increases, such as sneezing, exercising, and laughing. Surgical and non-surgical treatments are the common methods of SUI treatment; however, the conventional treatments still require continuous and invasive treatment. Laser have been used to treat SUI, but excessive temperature increase often causes thermal burn on urethra tissue. Therefore, the optimal conditions must be considered to minimize the thermal damage for the laser treatment. The current study investigated the feasibility of the laser irradiation condition for SUI treatment using non-ablative 980 nm laser from a safety perspective through numerical simulations. COMSOL Multiphysics was used to analyze the numerical simulation model. The Pennes bioheat equation with the Beer's law was used to confirm spatio-temporal temperature distributions, and Arrhenius equation defined the thermal damage caused by the laser-induced heat. Ex vivo porcine urethral tissue was tested to validate the extent of both temperature distribution and thermal damage. The temperature distribution was symmetrical and uniformly observed in the urethra tissue. A muscle layer had a higher temperature (28.3 ℃) than mucosal (23.4 ℃) and submucosal layers (25.5 ℃). MT staining revealed no heat-induced collagen and muscle damage. Both control and treated groups showed the equivalent thickness and area of the urethral mucosal layer. Therefore, the proposed numerical simulation can predict the appropriate irradiation condition (20 W for 15 s) for the SUI treatment with minimal temperature-induced tissue.

Numerical Analysis of Optical Damage in Dielectrics Irradiated by Ultra-Short Pulsed Lasers (극초단 펄스 레이저에 의한 절연체의 광학 손상 해석)

  • Lee, Seong-Hyuk;Kang, Kwang-Gu;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1213-1218
    • /
    • 2004
  • The present article reports extensive numerical results on the non-local characteristics of ultra-short pulsed laser-induced breakdowns of fused silica ($SiO_{2}$) by using the multivariate Fokker-Planck equation. The nonlocal type of multivariate Fokker-Planck equation is modeled on the basis of the Boltzmann transport formalism to describe the ultra-short pulsed laser-induced damage phenomena in the energy-position space, together with avalanche ionization, three-body recombination, and multiphoton ionization. Effects of electron avalanche, recombination, and multiphoton ionization on the electronic transport are examined. From the results, it is observed that the recombination becomes prominent and contributes to reduce substantially the rate of increase in electron number density when the electron density exceeds a certain threshold. With very intense laser irradiation, a strong absorption of laser energy takes place and an initially transparent solid is converted to a metallic state, well known as laser-induced breakdown. It is also found that full ionization is provided at intensities above threshold, all further laser energy is deposited within a thin skin depth.

  • PDF