• 제목/요약/키워드: Laser-desorption

검색결과 268건 처리시간 0.027초

Rapid Identification of Staphylococcus Species Isolated from Food Samples by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Kim, Eiseul;Kim, Hyun-Joong;Yang, Seung-Min;Kim, Chang-Gyeom;Choo, Dong-Won;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.548-557
    • /
    • 2019
  • Staphylococcus species have a ubiquitous habitat in a wide range of foods, thus the ability to identify staphylococci at the species level is critical in the food industry. In this study, we performed rapid identification of Staphylococcus species using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS was evaluated for the identification of Staphylococcus reference strains (n = 19) and isolates (n = 96) from various foods with consideration for the impact of sample preparation methods and incubation period. Additionally, the spectra of isolated Staphylococcus strains were analyzed using principal component analysis (PCA) and a main spectra profile (MSP)-based dendrogram. MALDI-TOF MS accurately identified Staphylococcus reference strains and isolated strains: the highest performance was by the EX method (83.3~89.5% accuracy) at species level identification (EDT, 70.3~78.9% accuracy; DT, less than 46.3~63.2% accuracy) of 24-h cultured colonies. Identification results at the genus level were 100% accurate at EDT, EX sample preparation and 24-h incubation time. On the other hand, the DT method showed relatively low identification accuracy in all extraction methods and incubation times. The analyzed spectra and MSP-based dendrogram showed that the isolated Staphylococcus strains were characterized at the species level. The performance analysis of MALDI-TOF MS shows the method has the potential ability to discriminate between Staphylococcus species from foods in Korea. This study provides valuable information that MALDI-TOF MS can be applied to monitor microbial populations and pathogenic bacteria in the food industry thereby contributing to food safety.

Photo-induced chemical change of di-fluoride in the CYTOP doped graphene

  • Yang, Mi-Hyun;Manoj, Sharma;Ihm, Kyuwook;Ahn, Joung Real
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.115-115
    • /
    • 2015
  • Many efforts have been devoted on chemical modification of graphene layer to modulate its electrical properties. In the previous report, laser irradiation on the CYTOP (Amorphous Fluoropolymer) covered graphene layer induces chemical modification wherein carbon fluoride is formed on the graphene surface. This results in the insulating I-V characteristics, which have been attracting much research interests on it. However, the direct analytical evidence of the fluoride formation on graphene surface is not yet studied. In this work we investigated what happened on the CYTOP/graphene interface during photon irradiation using spatially resolved photoemission spectroscopy method. It is found that the soft x-ray (614 eV) induces desorption of fluoride atoms from the CYTOP and change di-fluoride form to mono-fluoride. As the photo-induced fluorine desorption is continue strong dipole field generated by initial di-fluoride forms is gradually decreased, resulting in the overall binding energy shift of the C 1s core levels. Both photo-modified CYTOP and CYTOP starts to desorb above $286^{\circ}C$ (~ 0.047 eV), which means that no strong chemical interaction between CYTOP and graphene is established.

  • PDF

A new laser pulse atom-probe 제작 및 $H_2$ 가스와 He 가스의 time-of-flight mass spectrum (An extension of new laser pulse atom-probe construction and time-of-flight mass spectrum of $H_2$ and He gas)

  • 송순달;홍남관
    • 한국결정성장학회지
    • /
    • 제7권3호
    • /
    • pp.465-472
    • /
    • 1997
  • 본 연구는 전기 장에서 광여기 탈착과 이온화에 근거한 표면연구의 새로운 장치를 개발하고 시험한 결과를 보고한다. 실험장치의 분해능을 테스트 하기 위해 텡스텐(110)면에서 흡착기체 $H_2$ 와 He 가스를 조사하였으며, 팁의 온도는 80 K이었다. 장세기가 10 V/nm에서 50 V/nm사이에서 사용한 파장은 193 nm이였으며, 텡스텐(110)면에 가스가 흡착되었을때 레이저빔의 전자적인 여기로 부터 흡착가스와 팁에서 여러종류의 이온들이 형성되었다($H_2^+, CO^+, H_2O^+, He^+, W^{3+}$ 그리고 $W^{2+}$). 전체 mass spectrum의 기록은 Transient recorder가 가능하게 한다.

  • PDF

나노물질을 이용한 질량분석 기술 개발동향 (Mass spectrometry based on nanomaterials)

  • 박종민;노주윤;김문주;변재철
    • 세라미스트
    • /
    • 제21권3호
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Selective or Class-wide Mass Fingerprinting of Phosphatidylcholines and Cerebrosides from Lipid Mixtures by MALDI Mass Spectrometry

  • Lee, Gwangbin;Son, Jeongjin;Cha, Sangwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2143-2147
    • /
    • 2013
  • Matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a very effective method for lipid mass fingerprinting. However, MALDI MS suffered from spectral complexities, differential ionization efficiencies, and poor reproducibility when analyzing complex lipid mixtures without prior separation steps. Here, we aimed to find optimal MALDI sample preparation methods which enable selective or class-wide mass fingerprinting of two totally different lipid classes. In order to achieve this, various matrices with additives were tested against the mixture of phosphatidylcholine (PC) and cerebrosides (Cers) which are abundant in animal brain tissues and also of great interests in disease biology. Our results showed that, from complex lipid mixtures, 2,4,6-trihydroxyacetophenone (THAP) with $NaNO_3$ was a useful MALDI matrix for the class-wide fingerprinting of PC and Cers. In contrast, THAP efficiently generated PC-focused profiles and graphene oxide (GO) with $NaNO_3$ provided Cer-only profiles with reduced spectral complexity.

Utilization of functionalized magnetic nanoparticles for high throughput DNA separation

  • 장정호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.12.2-12.2
    • /
    • 2009
  • The work describes anoptimized process to highly efficient and convenient preparation in highthroughput magnetic human DNA separation with chemically functionalizedsilica-coated magnetic nanoparticles. The effect of nanoparticle's size and the surface's hydrophilicity change were studied for magnetic DNA separation process, inwhich the optimum efficiency was explored via the function of the amino-groupnumbers, particle size, the amount of the nanoparticles used, and theconcentration of NaCl salt. The DNA adsorption yields were high in terms of theamount of triamino-functionalized nanoparticles used, and the average particlesize was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticleswas the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only(10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M ofthe NaCl concentration. To elucidate the agglomeration of nanoparticles afterelectrostatic interaction, the Guinier plots were calculated from small angleX-ray diffractions in a comparison of the results of electron diffraction TEM,and confocal laser scanning microscopy. Additionally, the direct separation ofhuman genomic DNA was achieved from human saliva and whole blood with highefficiency.

  • PDF

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • 윤상선;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Agrobacterium sp. ATCC31750에 대한 beta-l,3-glucan 합성 대사경로의 주요 단백질 검출 (Identification of Key beta-1,3-glucan Synthesis Enzymes in Agrobacterium sp. ATCC31750)

  • 김려화;이중헌
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.406-409
    • /
    • 2004
  • Matrix Assisted Laser Desorption ionization Time of Flight (MALDI-TOF) was used for enzymes identification related to B -1,3-glucan synthesis. Agrobacterium sp. ATCC31750 was cultivated with two stage Continuous Stirrer Tank Reactor (CSTR) and the cells were harvested and their protein profiles were analysed by two dimensional electrophoresis. The specific enzyme spot was treated with trypsin and ana lysed by MALDI-TOF to get peptide molecular weight. The peptide molecular weights were matched with Agrobacterium tumefacience's Data Base from the matrix science site, then could identify the avaliable key enzymes. In this study, we identified key metabolite of synthesis of beta-1,3-glucan, such as glucose-6-phosphate isomerase, phosphoglucomutase, B-1,3-glucan synthase and glucokinase, and we also identified uracil phosphoribocyl transferase and Ribosome recycling factor also.

Analysis of Placental Proteins in Somatic Cell Clone Recipient Cows

  • Woo, Jei-Hyun;Chung, Hak-Jae;Kim, Bong-Ki;Ko, Yeoung-Gyu;Kim, Jeom-Soon;Jung, Jin-Kwan;Chang, Won-Kyong
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.197-197
    • /
    • 2004
  • The purpose of this experiment was to investigate the protein profiles in the placenta of Korean native cows(KNC) transferred cloned embryos and KNC artificially inseminated placental tissues were collected from the cows after cesarean section around parturition, and placental proteins were analyzed. Using two dimensional polyacrylamide gel eletrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. (omitted)

  • PDF

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • 제5권2호
    • /
    • pp.49-51
    • /
    • 2014
  • The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.