Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.7.2143

Selective or Class-wide Mass Fingerprinting of Phosphatidylcholines and Cerebrosides from Lipid Mixtures by MALDI Mass Spectrometry  

Lee, Gwangbin (Department of Chemistry, Hankuk University of Foreign Studies)
Son, Jeongjin (Department of Chemistry, Hankuk University of Foreign Studies)
Cha, Sangwon (Department of Chemistry, Hankuk University of Foreign Studies)
Publication Information
Abstract
Matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a very effective method for lipid mass fingerprinting. However, MALDI MS suffered from spectral complexities, differential ionization efficiencies, and poor reproducibility when analyzing complex lipid mixtures without prior separation steps. Here, we aimed to find optimal MALDI sample preparation methods which enable selective or class-wide mass fingerprinting of two totally different lipid classes. In order to achieve this, various matrices with additives were tested against the mixture of phosphatidylcholine (PC) and cerebrosides (Cers) which are abundant in animal brain tissues and also of great interests in disease biology. Our results showed that, from complex lipid mixtures, 2,4,6-trihydroxyacetophenone (THAP) with $NaNO_3$ was a useful MALDI matrix for the class-wide fingerprinting of PC and Cers. In contrast, THAP efficiently generated PC-focused profiles and graphene oxide (GO) with $NaNO_3$ provided Cer-only profiles with reduced spectral complexity.
Keywords
MALDI MS; Phosphatidylcholine; Cerebroside; Graphene oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, H.; Du, Z.; Wang, J.; Yang, R. Appl. Environ. Microbiol. 2007, 73, 1899.   DOI   ScienceOn
2 Han, X. L.; Cheng, H. J. Lipid Res. 2005, 46, 163.
3 Fuchs, B.; Suss, R.; Schiller, J. Prog. Lipid Res. 2010, 49, 450.   DOI   ScienceOn
4 Cha, S. W.; Yeung, E. S. Anal. Chem. 2007, 79, 2373.   DOI   ScienceOn
5 Estrada, R.; Yappert, M. C. J. Mass Spectrom. 2004, 39, 412.   DOI   ScienceOn
6 Stubiger, G.; Pittenauer, E.; Belgacem, O.; Rehulka, P.; Widhalm, K.; Allmaier, G. Rapid Commun. Mass Spectrom. 2009, 23, 2711.   DOI   ScienceOn
7 Cerruti, C. D.; Touboul, D.; Guerineau, V.; Petit, V. W.; Laprevote, O.; Brunelle, A. Anal. Bioanal. Chem. 2011, 401, 75.   DOI
8 Sugiura, Y.; Setou, M. Rapid Commun. Mass Spectrom. 2009, 23, 3269.   DOI   ScienceOn
9 Griffiths, R. L.; Bunch, J. Rapid Commun. Mass Spectrom. 2012, 26, 1557.   DOI   ScienceOn
10 Weng, M. F.; Chen, Y. C. Rapid Commun. Mass Spectrom. 2004, 18, 1421.   DOI   ScienceOn
11 Sun, G.; Yang, K.; Zhao, Z.; Guan, S.; Han, X.; Gross, R. W. Anal. Chem. 2008, 80, 7576.   DOI   ScienceOn
12 Jackson, S. N.; Ugarov, M.; Egan, T.; Post, J. D.; Langlais, D.; Schultz, J. A.; Woods, A. S. J. Mass Spectrom. 2007, 42, 1093.   DOI   ScienceOn
13 Niedermeyer, T. H. J.; Strohalm, M. Plos One 2012, 7.
14 Stubiger, G.; Belgacem, O. Anal. Chem. 2007, 79, 3206.   DOI   ScienceOn
15 Kim, Y. K.; Na, H. K.; Kwack, S. J.; Ryoo, S. R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D. H. Acs Nano 2011, 5, 4550.   DOI   ScienceOn
16 Zhou, X. Z.; Wei, Y. Y.; He, Q. Y.; Boey, F.; Zhang, Q. C.; Zhang, H. Chem. Commun. 2010, 46, 6974.   DOI   ScienceOn
17 Howard, K. L.; Boyer, G. L. Rapid Commun. Mass Spectrom. 2007, 21, 699.   DOI   ScienceOn