• 제목/요약/키워드: Laser-Tissue Interaction

검색결과 16건 처리시간 0.03초

레이저 조사후 자기공명영상과 조직학적 소견의 상호일치도 (MAGNETIC RESONANCE IMAGING AND HISTOPATHOLOGIC CORRELATIONS OF FOCAL LESIONS INDUCED BY LASER)

  • 이정구;정필상;정필섭;조정석;김상준
    • 대한기관식도과학회지
    • /
    • 제2권2호
    • /
    • pp.194-199
    • /
    • 1996
  • Laser therapy is becoming an accepted procedure for tissue coagulation and ablation and is especially useful in treating tumors. The laser energy is applied to the tissue of interest through various delivery systems which are introduced percutaneously, via blood vessels, through body openings, or during surgical exposure of the tissue. One of the major obstacles to effective application of lasers has been the lack of reliable method to determine the extent of tissue involvement in real time. Several methods have been proposed for monitoring the tissue response and controlling the laser in real time during laser therapy. Among them, magnetic resonance imaging(MRI) has been introduced to monitor laser-tissue interactions because laser irradiation induces changes not only in the thermal motions of the hydrogen protons within the tissue but also in the distribution and mobility of water and lipids. The buttocks of New Zealand rabbits were treated by KTP and $CO_2$laser(power : 10 watts, exposure time:10 seconds). m images were taken at immediately after lasering, 1 week later, 2 weeks later, and at the same time, tissues were harvested for histopathologic study. We analyzed MR images and histopathologic findigs of laser-treated tissues. The MR images taken immediately after laser treatment showed 3 layer pattern and which was correlated with histopathologic changes. We suggest MRI may become a useful monitoring tools for laser-tissue interaction.

  • PDF

쑥뜸과 1064 nm 파장의 근적외선 레이저로 가열된 아가젤 조직 팬텀 심부의 온도분포 가시화 (Visualization of Temperature Distribution Deep Inside the Agar Gel Tissue Phantom Heated Using Moxibustion and 1064 nm Infrared Laser)

  • 조지용;김중경
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.54-59
    • /
    • 2010
  • A laser moxibustion therapy device having effect similar to that of traditional moxibustion is being developed using 1064 nm infrared laser. The therapy device allows direct interaction of laser light with the tissue rendering temperature distribution both on the skin surface and deep under the skin. We made a device that could measure temperature of deep under the surface of agar gel tissue phantom using thermocouples. A thermal imaging camera was used to verify results from the temperature measurement device. We compared the characteristics of heat transfer inside the tissue phantom during moxibustion and laser irradiation. The temperature distribution measured by thermocouples was found to be similar to that of distribution given by thermal imaging camera.

The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions

  • Lee, Ho;Jeong, Yeon-Uk;Chan, Kin F.
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.321-329
    • /
    • 2009
  • Following their applications in cardiology, ophthalmology and dentistry among others, the advent of lasers in dermatology and urology had become the success story of the past decade. Laser-assisted treatments in dermatology and urology are mainly based on the laser-induced tissue injury/coagulation and/or ablation, depending upon the desirable clinical endpoint. In this review, we discussed the underlying mechanisms of the laser induced tissue ablation. In any medical laser application, the controlled thermal injury and coagulation, and the extent of ablation, if required, are critical. The laser thermal mechanism of injury is intricately related to the selective absorption of light and its exposure duration, similarly to the laser induced ablation. The laser ablation mechanisms were categorized into four different categories (the photo-thermally induced ablation, the photo-mechanically induced ablation, the plasma induced ablation and the photoablation) and their fundamentals are herein described. The brief history of laser treatment modality in dermatology and urology are summarized.

Pulsed Laser를 이용한 생체조직 가열을 위한 모델링 : Skin Resurfacing을 위한 연관성 (Modeling of Pulsed Laser Heating of Tissue: Implications or Skin Resurfacing)

  • 권용훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.375-379
    • /
    • 1997
  • Pulsed Er:YAG and $CO_2$ lasers induced temperature rise of tissue are studied using axisymmetric, two-dimensional, and transient Pennes' bio-heat equation or the implications of skin resurfacing. Model results indicate that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the $CO_2$ laser because of its higher absorption coefficient. The increase of repetition rate does not affect the temperature rise too much because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

A PRELIMINARY STUDY OF PULSED LASER HEATING OF TISSUE FOR THE IMPLICATIONS OF SKIN RESURFACING

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • 제5권1호
    • /
    • pp.39-43
    • /
    • 1998
  • Pulsed Er: YAG and CO$_2$ lasers induced temperature rise of tissue is studied using axisymmetric, two-dimensional, and transient Pennes bio-heat equation for elucidating the implications of skin resurfacing. Modeling indicates that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the CO$_2$ laser because of much higher absorption coefficient. The increase of repetition rate does not much affect on temperature rise because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

An Overview of Laser-assisted Bioprinting (LAB) in Tissue Engineering Applications

  • Ventura, Reiza Dolendo
    • Medical Lasers
    • /
    • 제10권2호
    • /
    • pp.76-81
    • /
    • 2021
  • Biological tissues and organs are composed of different arrays of cells, biochemical cues, and extracellular matrices arranged in a complex microarchitecture. Laser-Assisted Bioprinting (LAB) is an emerging and promising technology that is reproducible with high accuracy that can be used for fabricating complex bioengineered scaffolds that mimic tissues and organs. The LAB process allows researchers to print intricate structural scaffolds using cells and different biomaterials essential for facilitating cell-scaffold interaction and to induce tissue and organ regeneration which cannot be achieved in a traditional scaffold fabrication. This process can fabricate artificial cell niches or architecture without affecting cellular viability and material integrity. This review tackles the basic principles and key aspects of Laser-Assisted Bioprinting. Recent advances, limitations, and future perspectives are also discussed.

808 nm 파장의 고출력 근적외선 레이저 조사 시 돼지 조직의 천공 특성 연구 (Characterization of Porcine Tissue Perforation Using High-Power Near-Infrared Laser at 808-nm Wavelength)

  • 김성준;조지용;최재순;이돈행;김중경
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.807-814
    • /
    • 2013
  • 소화기 내시경에 장착된 808 nm 파장의 고출력 근적외선 레이저를 장벽에 조사하여 병변을 제거할 수 있는 치료용 의료기기의 개발을 목적으로 레이저-조직 상호작용에 관한 기초 실험을 진행했다. 레이저 출력 3~12 W, 조사 시간 5~20 s 범위에서 각 변수의 증가에 따라 천공 깊이가 1~4 mm 범위에서 선형적으로 증가했다. 돼지에서 적출한 각 장기에 대한 레이저 조사 시 천공 깊이가 조직 특성에 따라 달라짐을 확인했다. 온도 측정 결과로부터 열에너지가 레이저 조사 지점에 집중되고 심부로 전달되어 주변 조직의 열손상은 방지됨을 알 수 있었다. 본 연구 결과는 위, 대장 등의 소화기 조직에서 일정한 절개 깊이를 얻기 위해 필요한 근적외선 레이저의 구동 조건을 결정하는데 활용될 수 있다.

Evaluation of Diffuse Reflectance in Multi-layered Tissue for High Intensity Laser Therapy

  • Lee, Sangkwan;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.205-212
    • /
    • 2013
  • Pain is one of the quite common symptoms in clinics and many treatment methods have been applied to relieve pain. Among the treatments, high-intensity light therapy for pain has been introduced, but this therapy has not been fully supported by confirmed efficacy due to the absence of quantitative assessments and treatment feedback data in real time. In this study, the evaluation of light distribution in tissue was performed with current high-intensity light sources quantitatively using light-tissue interaction simulations. The diffuse reflectance in tissue was generated using Monte Carlo simulation that traces photons as they undergo multiple scattering and absorption within each tissue layer (skin, fat, and muscle) and within multi-layered tissue. The results showed that the highest diffuse reflectance and the deepest penetration of tissue were achieved at ${\lambda}$=830 nm when compared with other wavelengths like ${\lambda}$=650 nm, 980 nm and 1064 nm.

레이저의 이해와 그 의학적 응용에 관한 고찰 (Laser Understandings and Prospects of its Applications in Medicine)

  • 김현수;김귀언;추성실
    • 한국의학물리학회지:의학물리
    • /
    • 제6권1호
    • /
    • pp.19-37
    • /
    • 1995
  • 레이저를 의료에 응용하는데 있어서 그 근본원리는 일반적인 레이저 응용기술과 차이가 없다고 할 수 있으나 응용대상이 인체라는 점에서 특수한 연구분야라 할 수 있다. 레이저를 의료에 응용하는 경우 종래의 의료기술과는 근본원리에 있어서 다른 경우가 보통이므로 새로운 의학기술로서의 연구개발이 수행되어야 할 것이다. 본 논문은 레이저 기초물리학을 비롯하여 레이저광과 생체조직의 상호작용, 치료 및 진단기술, 의료용 레이저와 광파이버 기술, 레이저 안전등에 관해 기술하고 있으며 레이저의 의학에의 전망에 대해 논의하고 있다.

  • PDF

저출력(低出力)레이저 침 치료에 관한 국내(國內) 논문(論文) 분석(分析) -레이저 기기(器機) 중심(中心)- (Review of Domestic Papers on Low level laser therapy -mainly focused on laser apparatus-)

  • 이승호;이승헌;박히준;소광섭;임사비나
    • Korean Journal of Acupuncture
    • /
    • 제22권2호
    • /
    • pp.163-181
    • /
    • 2005
  • Objective: The purpose of this study is to review research papers on low level laser therapy (LLLT) and to improve the knowledge of LLLT field. Methods: For introduction, laser characteristics, including wavelength, medium, beam size, power, and unit power were explained. In order to understand LLLT, tissue optics and light-biomatter interaction were briefly mentioned. We reviewed 21 Korean papers on laser acupuncture and LLLT on the viewpoint of laser apparatus. Results and Conclusion: We found that the description of laser apparatus employed for LLLT experiments were not fully written. Laser wavelength and power which are the most crucial parameters, were omitted in several papers. No paper had information on beam size. In order to have high efficacy, laser should be used with proper laser parameters. Conditions of irradiation area or acupoints should be considered too. Some future technology on laser acupuncture were mentioned.

  • PDF