• Title/Summary/Keyword: Laser-Interferometer

Search Result 366, Processing Time 0.027 seconds

A Study on Fiber Optic Hydrophone with Double Interferometers for Optical Path Length Compensation

  • Kim, Jeong-suk;Yoon, Hyun-gyu;Seol, Jae-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.25-30
    • /
    • 2002
  • We report on the development of a fiber optic hydrophone consists of a sensing Michelson interferometer and a compensating Mach-Zehnder interferometer for optical path length compensation. The double interferometer configuration has the following advantages: the hydrophone can be made more small; a laser source with a relatively short coherence length can be used; and the compensating interferometer can be located near the signal processing electronics, far away from the sensing interferometer and noise introduced by reference arm can be greatly reduced. The performance of the hydrophone is evaluated experimentally by immersing the sensing interferometer in a water tank to detect underwater acoustic signals generated by an acoustic wave projector. Experimental results show that over the frequency range of 1 to 4 kHz, the hydrophone has an almost flat response with an average normalized sensitivity of -302 dB re 1/ μ Pa.

Analysis for the Squareness Measurement using Laser Interferometer (레이저 간섭계를 이용한 직각도 측정에 관한 분석)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.863-872
    • /
    • 2012
  • The squareness measurement of driving axes of a machine tool is very important to evaluate the performance of the machine. Laser interferometer measurement system is one of the most reliable equipment to measure the squareness. However, squareness measurement using laser system with an optical square result in restriction of straightness optics setup and Abbe's offset. This offset combines with angular errors during the motion of an axis to cause Abbe's error. In addition, the difficulty in optical square setup causes restriction of other optics and limitation of measurable range. In this paper, mathematical approaches are presented to eliminate the Abbe's error and to estimate squareness for full range by using the best fit of straightness data measured without an optical square. Experiments for squareness measurement of 3 axis machine tool were conducted and the proposed techniques were used for squareness evaluation with elimination of Abbe's error and squareness estimation for the full travel range.

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

Final Diffraction Patterns of the Beam Splitters used in the Soft XRay Interferometer by a He-Ne Laser

  • Oh, Chul-Han;Choi, Dae-Uk;Park, Sung-Jin;Howells, M.R.;Moller, E.J.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2000
  • The soft x-ray(10nm-100nm) interferometer is a modified Mach-Zehnder type interferometer and it consists of two beam-splitters and four totally reflecting mirrors. The beam-splitters used here are 50% transmission and 50% reflection grating type. The diffraction patterns of beam splitters(1st B.S.) were investigated with a He-Ne laser. The diffraction patterns produced by the soft x-ray interferometer (2nd B.S.) were also investigated in intensities positions. The diffraction patterns of 20 degree grazing incidence on the beam splitters(1st B.S.) show a circular array of spots. Both the reflected and the transmitted beams show the same patterns but symmetric circles on the screen. The maximum intensity appears roughly when n is in the zeroth and odd orders and the suppressed peak(missing order) appears when n is in even orders. Intensities of 3 center fringes(n = 0, $\pm$1) are stronger than others. These results confirm the reduced grating equation and make agree with the intensity distribution function. It was found that the final patterns produced by the soft x-ray interferometer (2nd B.S.) consisted of fine fringes which were caused by two of three diffraction beams that were arrived at the second beam-splitter.

Development of linear measuring system (선형측정장치 개발)

  • Eom, Tae-Bong;Kim, Goo-Young;Chung, Myung-Sai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.104-108
    • /
    • 1993
  • The linear length measurements are most frequently performed and should be most accurate among other parts in dimensional metrology. We developed the linear measuring system using a laser interferometer to improve the accuracy and to shorten the calibration time. The uncertainty of the system is 0.01 .mu. for 500mm steel gage block. The range of the measurement and resolution of the system are 1000mm and 0.01 .mu. m, respectively.

  • PDF

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng;Jin, Long;Dong, Yuan;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.721-729
    • /
    • 2021
  • We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.

TAMA-300 PROJECT FOR GRAVITATIONAL WAVE DETECTOR

  • KOZAI YOSHIHIDE;TEAM TAMA-300 PROJECT
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.279-280
    • /
    • 1996
  • This paper reports on the outline and the status of the TAMA-300 project, the 300 meter laser interferometer gravitational wave detector developed by a team of scientists of several research institutes and universities in Japan. In fact the project has been funded and its construction started at the National Astronomical Observatory, Mitaka, in spring 1995. And the constructions of the tunnels for the east-west and north-south arms and of the central building are completed and a half of pipes for laser beams were brought in. Very stable laser oscillator has been almost completed and mew techniques such as vibration isolations, recycling of laser power, and suspension of mirrors by double pendulums have been developed. In fact the purposes of the project are to establish techniques necessary for future km-class detectors and to operate the detector to catch possible gravitational wave events in nearby galaxies such as Andromeda, the target sensitivity being $3 {\times} 10^{-21}$ at 300Hz.

  • PDF

Design of Precision Position Measuring System using Laser Interferometry (광간섭법을 이용한 정밀 위치측정 시스템 설계)

  • 김진상;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.145-149
    • /
    • 1997
  • A laser mesurement system, a modified Michelson interferometer,which can accurately measure high speed length and position of servomechanisms by detecting a phase shift in the measurement beam using an optical interference was developed. A frequency stabilized laser source and a 20 fold frequency interpolation and digitizing circuit were applied to the system. The refractive index of the ambient air was calibrated through the Edlen's formula. The system achieved a resolution of .lambda./40,16nm, a maximum allowable measurement speed of 600 mm/sec, and a length measurement range of 1500mm. Performance of the system was evaluated on the machining center in short and long length measurements

  • PDF

A Study on the New Widely Tunable Optical Filter for Ring Laser (링 레이저를 위한 새로운 광대역 파장 가변 필터에 대한 연구)

  • Kim, Kwang-Yoo;Lee, Jung-Ryul;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.95-99
    • /
    • 2006
  • In this paper, we proposed the new wavelength tunable filter for wide tunability of fiber ring laser. The proposed filter consists of the cascaded connection of Fiber Reflection Mach-Zehnder Interferometer and Sagnac filter or of hybrid filter and Fiber Reflection Mach-Zehnder Interferometer. The simulation shows that the continuous tunable range of 50nm can be obtained and that more stable single mode operation of ring laser can be expected due to narrow FWHM. of filter spectrum.

  • PDF