• Title/Summary/Keyword: Laser types

Search Result 391, Processing Time 0.023 seconds

Medical Laser (의료용 Laser)

  • 김덕원
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 1990
  • Characteristics and applications of three major types of lasers are discussed. They are chemical-metabolic, thermal destructive, and nonthermal mechanical lasers. The thermal destructive lasers ($CO_2$, Argon, and Nd:YAG) are especially explained in detail with regard to energy density, wavelength, fluence, stage of thermal destruction, and advantages of laser surgery. Excimer and Q-swiched lasers are discussed as nonthermal mechanical ones. Delivery system, optical fiber and articulated arm, is also discussed. Finally, recent advancements of medical laser are included in the conclusion.

  • PDF

Laser Processing Technology using Metal Powders (금속분말의 레이저 공정 기술)

  • Jang, Jeong-Hwan;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Transoral $CO_2$ Laser Microsurgery for Glottic Carcinoma (성대암에서 $CO_2$ 레이저를 이용한 경구강절제술)

  • Chung, Phil-Sang;Moon, Tae-Hyun
    • Korean Journal of Bronchoesophagology
    • /
    • v.16 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Transoral $CO_2$ Laser Microsurgery of glottic Carcinoma is replacing external approaches. The qualify of life after surgery for laryngeal cancer may be as important as complete resection of the tumor for patient. Transoral $CO_2$ laser cordectomy for the management of early laryngeal cancer has advantages with regard to oncological results, preservation of laryngeal functions, morbidity and cost in comparison to those of open surgery or radiation therapy. Moreover, transoral laser surgery can be a useful choice as a salvage surgery in radiation therapy failed early glottic cancer. A classification of laryngeal endoscopic cordectomies which included eight different types was described by the European laryngological Society in 2000. We will also introduce type VI which was newly proposed recently.

  • PDF

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Fatigue Characteristics of Laser Welding Part for TB (TB용 레이저 용접부의 피로 특성)

  • Oh, Jong-Chul;Han, Moon-Sik;Seo, Jung;Lee, Je-Hoon
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.23-29
    • /
    • 2002
  • As automotive manufacturers have taken a growing more interest in tailored sheet metals for improving the rigidity, weight reduction, crash durability, and cost saving application of the tailored sheet metals to automotive bodies has been resently increased greatly. In this study, we investigated the characteristics of fatigue crack initiation behavior of laser welded sheet use for vehicle body panel. We experimented three types of specimens which were machined of the same base metal : one is 1.4㎜ thick, another is 1.6㎜ thick, the others is laser welded of the 1.4mm thick specimen and 1.6㎜ thick specimen. The results indicated that laser welded metal (1.4+1.6㎜) is the best one for fatigue strength and fatigue life.

  • PDF

The Interaction for the pit formation on ABS with laser beam (레이저에 의한 ABS의 홈 형성에 동반되는 상호작용)

  • Kim Youngseop;Park Sohee;Shin Yongjin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2004.10a
    • /
    • pp.22-28
    • /
    • 2004
  • Pit and rim formation on the Acrylonitrile Butadiene Styrene(ABS) plastic surface was evaluated after it was irradiated by $CO_2$ and Nd:YAG laser beams. Our results show that thermal effect floor was well observed at the outer wall of pit with $CO_2$ laser irradiated while it was not the case with Nd:YAG laser irradiated. Also the volume and depth of pit formation increase proportionally with the energy intensities of two laser irradiations, but there are significant differences in the slope, width, and FWHM of the Pit formation with two types of laser irradiations. This result shows that $CO_2$ laser irradiation leads to better cooling contraction effect while Nd:YAG laser irradiation induces better recoil pressure effect during the interaction between ABS plastic and laser beam irradiation. The shape of the laser marking could vary significantly depending on the traveling path of molten plastic during injection molding of ABS plastic. Therefore, the selection of material and molding process can have a great impact on the performance of optical storage media.

  • PDF

Clinical Applications of a Non-ablative Fractional Dual Laser (1550/1927 nm)

  • Chang, Ho Sun;Lim, Nam Kyu
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.110-118
    • /
    • 2020
  • The non-ablative fractional dual laser is equipped with two types of lasers, 1550 nm and 1927 nm in one device, and was approved by the United States Food and Drug Administration in 2013. The advantages of the non-ablative fractional laser (NAFL) include fewer side effects such as erythema, edema, post-laser pigmentation, and scab formation. Thus, the NAFL is preferred by both practitioners and consumers because it is convenient and safe for use. The 1550 nm erbium glass and 1927 nm thulium lasers are representative NAFLs that have been developed separately and are often used as a single-wavelength laser with proven clinical efficacy in various indications. The 1550 nm wavelength laser penetrates the dermis layer and the 1927 nm wavelength laser is effective for epidermal lesions. Therefore, targeting the skin layer can be easily achieved with both the 1550 and 1927 nm lasers, respectively, or in combination. Clinically, the 1550 nm laser is effective in the treatment of mild to moderate sagging and wrinkles, scars, and resurfacing. The 1927 nm laser improves skin texture and treats skin pigmentation and wounds. It can also be used for drug delivery. The selection and utilization rate of NAFL has been increasing in recent times, due to changes in lifestyle patterns and the need for beauty treatments with fewer side effects and short downtime. In this study, we present a plan for safe and effective laser therapy through a review of literature. Clinical applications of the multifunctional NAFL are also described.

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang;Feisen Wang;Chuang Cai;Hui Chen;Fei Ji;Chen Yong;Dasong Liao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.12-24
    • /
    • 2023
  • With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

The Spectrum of Laser Instruments for Laser Acupuncture Application (레이저침 시술에 사용되는 레이저 기기의 적용 범위에 대한 고찰)

  • Hwang, Eui-Hyoung;Yang, Chang-Sop;Jang, In-Soo
    • Journal of Acupuncture Research
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • Objectives : During the past three decades there has been a significant evolution of laser acupuncture application in the nature of the clinical approach and the research of traditional medicine and laser therapy field. However, there have been no standard and guideline of laser equipment can be applied as laser acupuncture. This study aims to investigate the condition of laser equipment required as a laser acupuncture method. Methods : First, we performed literature search using the Medline(from 1999 to Oct 2008) to confirm types and ranges of laser equipments that can be applied as laser acupuncture. In addition, we investigated the characters of acupoints such as sites and depths, and compared with penetrating depths of each laser. Results : A total of 37 articles for clinical studies using laser acupuncture were selected, and 41 lasers were used. GaAs laser was used three times, GaAlAs laser 14, InGaAlP 18, HeNe laser 4, and Argon laser and CO2 laser were used one time, respectively. From all 361 points of fourteen meridians, depths of 341 points(94.5%) were 1 cun(2.3-3.2cm) or less. The mean depth of all points was 0.48 cun(1.1-1.5cm). Hence, it appeared that the majority of therapeutic lasers satisfied with the condition. HeNe, InGaAlP, GaAlAs, GaAs lasers are recommended for laser acupuncture, however, it may plausible that other surgical lasers could be used as the laser acupuncture, because it have the biostimulation effect to some extent, too. Conclusions : It is suggested that to select appropriate laser type and give the adequate output power to reach the acupoints under the skin using laser acupuncture. Further evaluation and research for the condition of laser acupuncture are warranted.

  • PDF

An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System (Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구)

  • Choi, Kyung-Jin;Lee, Young-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.