• Title/Summary/Keyword: Laser surface melting

Search Result 93, Processing Time 0.033 seconds

Optimization of selective laser sintering process parameter for Fe-Ni-Cr coating fabrication (Fe-Ni-Cr 코팅층 형성을 위한 SLS 공정변수의 최적화)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.278-281
    • /
    • 2009
  • Selective laser sintering(SLS), a kind of rapid prototyping technology, can provide a process to form many types of coatings. Coated layers by selective laser melting are highly influenced by substrate, powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore an attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel has been performed by selective laser sintering. In this study, Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with Ar. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of coating layer was improved with fill spacing optimization or layer thickness decrease.

  • PDF

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Analysis of Overlapping Heat Zones in Laser-Assisted Machining (레이저보조가공에서 중첩열원에 관한 해석 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1023-1029
    • /
    • 2015
  • Laser-assisted machining (LAM) is one of the most effective methods for enhancing the machinability of difficult-to-cut materials, such as titanium alloys and various ceramics, and has been studied by many researchers. LAM is a method that facilitates machining by softening a workpiece using a laser heat source. The advantages of the LAM process are decreases in tool wear, cutting force, and surface roughness. However, when the material is over-heated, melting or burning can occur. This study analyzed the heat source distribution with regard to overlapping of preheating on the laser heating path with an acute angle, a right angle and obtuse angles. Then, a power reduction method was proposed to reduce the melting and burning of the workpiece.

Laser Surface Alloying of Alloy 600 to Improve Its Corrosion Resistance (Allow 600 합금의 내부식성 향상을 위한 레이저 표면 합금화)

  • 신진국;강석중;서정훈;국일현;김정수
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • The surface of Alloy 600 was alloyed using a continuous wave $CO_2$ laser beam in order to improve its corrosion resistance. Laser surface alloying (LSA) was done by melting the surface electroplated with Cr of the alloy. The Cr concentration of the alloyed surface was 28-30 at.%, which is similar to that of Alloy 690. Alloying elements in the alloyed layer was observed to be distributed very homogeneously all over the alloyed region. According to the electrochemical and modified Huey tests, the corrosion resistance, in particular the grain boundary corrosion resistance, of the LSA specimens was significantly improved, compared with that of the as-received(AR) specimen. This improved corrosion resistance of the alloyed specimen might be attributed to the high Cr content which could make possible formation of more stable and dense passive film onto its surface.

  • PDF

Effects of High-temperature UNSM Treatment on Wear Resistance of Ti-6Al-4V Alloy Prepared by Selective Laser Melting (Selective Laser Melting 방식으로 적층가공된 Ti-6Al-4V 합금의 내마모성 특성에 미치는 고온 UNSM 처리 영향에 대한 연구)

  • Sanseong, Choongho;Ro, Jun-Suek;Pyoun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) treatment at room and high temperatures (RT and HT of 400℃) on friction and wear behavior of Ti-6Al-4V alloy prepared by selective laser melting (SLM) were investigated. The objective of this study is to improve the mechanical properties and frictional behavior of Ti-6Al-4V alloy by UNSM treatment. Dry friction and wear tests were conducted using a ball-on-disk method at RT with a bearing steel as the counter ball. Due to the high HT and UNSM treatment, the surface hardness tended to increase and surface roughness tended to reduce. X-ray diffraction (XRD) analysis showed that nanocrystallization structure and compressive residual stress were formed at the surface layer after UNSM treatment at both RT and HT. After UNSM treatment, it was observed that the wear rate was reduced by about 6% for the specimen treated at RT and a 28% reduction for the specimen treated at HT in comparison with the untreated one. Based on scanning electron microscope (SEM) images showed that the damage caused by fatigue wear occurred in the wear track of the heat-treated specimen, and it is believed to be the cause of the highest wear rate. Mechanical properties and wear resistance of Ti-6Al-4V alloy were improved and prospect of industrial application was confirmed. Further research is still required to improve the characteristics of SLM Ti-6Al-4V alloy to the level of wrought Ti-6Al-4V alloy.

Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder (Fe-Ni-Cr 분말의 선택적 레이저 소결 적층시 공정변수에 따른 조형특성)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 2009
  • Selective laser sintering is a kind of rapid prototyping process whereby a three-dimensional part is built layer wise by laser scanning the powder. This process is highly influenced by powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore a study on fabricating Fe-Ni-Cr powder by selective laser sintering has been performed. In this study, fabrication was performed by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with argon. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of quadrangle structure was improved with fill spacing optimization.

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

A Study of tow-Power Density Laser Welding Process with Evolution of me Surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1202-1209
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge and descends at the center of the weld pool if d$\sigma$/dT is dominantly negative. It is shown that the predicted weld pool width and depth with moving free surface are a little greater than those with flat weld pool surface. It is also believed that the weld pool surface oscillation during the melting process augments convective heat transfer rate in the weld pool. The present analysis with moving free surface should be considered when We number is very small compared to 1.0 since the deformation of the weld pool surface is noticeable as We number decreases.

A study of low-power density laser welding process with evolution of free surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.133-138
    • /
    • 2003
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge if ${\partial}{\sigma}/dT$ is dominantly negative. On the contrary, the free surface rise at the center of weld pool in case of mainly positive ${\partial}{\sigma}/dT$. The predicted weld pool width and depth with moving free surface are 5∼15%$5{\sim}15%$ greater than those with flat weld pool surface. It is considered that weld pool surface oscillation during melting process augments convective heat transfer rate in the weld pool.

  • PDF