• Title/Summary/Keyword: Laser sintering

Search Result 219, Processing Time 0.024 seconds

Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: two- and three-dimensional replica techniques

  • Kim, Ki-Baek;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • PURPOSE. One of the most important factors in evaluating the quality of fixed dental prostheses (FDPs) is their gap. The purpose of this study was to compare the marginal and internal gap of two different metal-ceramic crowns, casting and selective laser sintering (SLS), before and after porcelain firing. Furthermore, this study evaluated whether metal-ceramic crowns made using the SLS have the same clinical acceptability as crowns made by the traditional casting. MATERIALS AND METHODS. The 10 study models were produced using stone. The 20 specimens were produced using the casting and the SLS methods; 10 samples were made in each group. After the core gap measurements, 10 metal-ceramic crowns in each group were finished using the conventional technique of firing porcelain. The gap of the metal-ceramic crowns was measured. The marginal and internal gaps were measured by two-dimensional and three-dimensional replica techniques, respectively. The Wilcoxon signed-rank test, the Wilcoxon rank-sum test and nonparametric ANCOVA were used for statistical analysis (${\alpha}$=.05). RESULTS. In both groups, the gap increased after completion of the metal-ceramic crown compared to the core. In all measured areas, the gap of the metal cores and metal-ceramic crowns produced by the SLS was greater than that of the metal cores and metal-ceramic crowns produced using the casting. Statistically significant differences were found between cast and SLS (metal cores and metal-ceramic crown). CONCLUSION. Although the gap of the FDPs produced by the SLS was greater than that of the FDPs produced by the conventional casting in all measured areas, none exceeded the clinically acceptable range.

Study of Mechanical Property of Metal by Changing the Conditions of Metal 3D Printing Parameter (금속 3D 프린터 제작조건 변화에 의한 금속소재 물성변화연구)

  • Noh, Yong-oh;Rhee, Byung-ho;Park, Sun-hong;Han, Yeoung-min;Bae, Byunghyun;Kim, Young-june;Cho, Hwang-rae;Hyun, Seong-yoon;Bang, Jeong-suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.849-855
    • /
    • 2017
  • The development of a staged combustion cycle engine with higher perfomance is essential to provide higher transport capability of space launch vehicles. The combustor head of engine has a cone-shaped head and its manifold of combustor has a very complicated structure. The head and manifold have been manufactured by casting or machining methode. Metal 3D printing technologies are recently known as one of promising methods to improve manufacturing process for them because they are possible to over come limitations of the two methods. In this paper, a selective laser sintering method is used to make test materials and their physical properties are studying by changing its operation parameters to establish the better processing conditions. It is found that the 3D printing method is acceptable to manufacturing the head or manifold of combustor for staged combustion cycle engine.

  • PDF

Evaluation and comparison of the marginal adaptation of two different substructure materials

  • Karaman, Tahir;Ulku, Sabiha Zelal;Zengingul, Ali Ihsan;Guven, Sedat;Eratilla, Veysel;Sumer, Ebru
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • PURPOSE. In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, $24.47{\pm}5.82{\mu}m$ before and $35.11{\pm}6.52{\mu}m$ after cementation; in the laser-sintered Co-Cr structure, it was, on average, $60.45{\pm}8.87{\mu}m$ before and $69.33{\pm}9.03{\mu}m$ after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

Taper phenomenon of UV-laser punching process on zero-shrinkage substrate (무수축 기판 상에 UV 레이저 가공에 의한 Taper 현상)

  • Ahn, Ik-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.285-289
    • /
    • 2015
  • With the miniaturization with both high functionality and high integrity of the probe cards, the highly precise laser punching on the zero-shrinkage high strength substrate has attracted more attention recently. Taper occurrence during laser-punching on green sheets appears as a problem in process. The size (diameter) difference between the entrance hole and the exit hole in tapered holes appeared to be inversely proportional to the hole size itself. To suppress taper occurrence, two-stage punching was adopted as the size of second hole was varied from $70{\mu}m$ to $79{\mu}m$ when punching $80{\mu}m$ via holes on the substrate with thickness of $380{\mu}m$. The minimal taper ratio of 11.9 % appeared with second hole size between 70 to $79{\mu}m$ before sintering. Taper ratio reduced to 7 % after zero-shrinkage sintering. The size difference between first hole and second hole appeared minimal when the size of second hole was 95~97 % to that of first hole.

A Study on the Fabrication and Characteristics of Continuous W-Cu FGM by Spark Plasma Sintering (방전플라즈마소결법에 의한 W-Cu 연속경사기능재료의 제조와 특성에 관한 연구)

  • 신철균;강태훈;권영순;김지순;김환태;석명진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.217-217
    • /
    • 2003
  • W-Cu 합금은 우수한 전기적, 열적 특성으로 인하여 열소산재료(Heat sink)로 많이 응용되고 있다. 첨단 전자부품 이외에도 핵융합로의 Diverter가 그 예로서, 내부는 고강도와 고융점의 특성을 요구하는 반면, 외부는 높은 열전도성을 필요로 한다. 그래서 동일한 조성의 일반적인 W-Cu 합금보다 W과 Cu의 조성이 점차적으로 변화하는 경사기능재료(Functionally Graded Materials)가 냉각효율이 클 것으로 기대된다. 현재, W-Cu FGM에 대한 많은 연구가 진행되고 있지만, 그 조성이 연속적으로 변화하는 W-Cu FGM에 대한 연구는 전무한 실정이다 본 연구에서는 방전플라즈마 소결장치(Spark Plasma Sintering System)와 용침고정을 이용하여 연속적인 조성변화를 갖는 W-Cu FGM을 제조하고 그 특성에 관해 분석하고자 하였다. 소결체가 밀도 변화를 갖게 되도록 제작한 특수 경사기능 몰드에 W분말을 장입한 후, 15㎬의 압력하에서 SPS를 이용하여 W소결체를 제조하였다. 제조된 W소결체는 수평관상로에서 수소분위기 하에 Cu 용침을 실시하여 W-Cu FGM을 제조하였다 SEM을 이용한 각 위치별 조직관찰과 Image Analyzer를 이용한 W과 Cu의 면적비, 그리고 비커스경도계에 의한 경도 측정을 실시하였다. 또 열기계적 분석기를 이용하여 측정된 선팽창률로부터 열팽창계수를 구하였다. 80$0^{\circ}C$에서 ?칭하는 반복적인 싸이클을 통해 열충격시험을 실시하였고, Laser flash method로 열확산계수를 측정하였다.

  • PDF

Rapid Manufacturing of Large Object by Splitting Solid Model in VLM-ST (VLM-ST 공정에서 입체 절단을 이용한 대형 물체의 쾌속 제작)

  • 이상호;안동규;김효찬;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.50-53
    • /
    • 2003
  • Most companies use technologies such as stereolithography, selective laser sintering, and fused deposition modeling to make parts for such small consumer products as telephones, heads, and shoes. The largest part that the existing RP systems can make is only 600 mm in length. Because most RP systems build parts by depositing, solidifying, or sintering material point-by-point, making larger objects takes a long time. and in many cases, large objects won't fit the build size. A new effective thick-layered RP process. Transfer type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. In this paper, a scaledown model of F16 Fighter with the length of 800 mm is rapidly fabricated using the VLM-ST process. In order to build a CAD model of F16 larger than 600 mm in length, the approach in VLM-ST is to build larger parts in multiple sub-parts and then glue them together. The fabricated result shows that the VLM-ST process employing thick layers and sloped surfaces is adequate for creating the real-sized large objects in the diverse fields such as automobiles, electric home appliances, electronics. and etc.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics

  • Yoo, H.S.;Son, Y.H.;Hong, T.W.;Ur, S.C.;Ryu, S.L.;Kweon, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.533-534
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. All XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050\;^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050\;^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5kV. From these results, a BLT ceramic target for plused laser deposition (PLD) system was successfully fabricated.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics (소결한 $(Bi,La)_4Ti_3O_{12}$ 강유전체 세라믹의 미세구조 및 전기적 특성)

  • Yoo, Hyo-Sun;Son, Yong-Ho;Ur, Soon-Chul;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.276-277
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. AII XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5 kV. The calculated electromechanical coupling factor ($k_t$) of it was about 5% and the mechanical quality factor (Qm) was about 2200. From these results, a BLT ceramic target for pulsed laser deposition (PLD) system was successfully fabricated.

  • PDF

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.

Surface Characteristics of Ground and Post-Sintered Zirconia (지르코니아의 소결 후 특성)

  • Kim, Min-Jeong;Kim, Im-Sun;Choi, Byung-Hwan;Kim, Won-Gi
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Purpose: It is to compare and evaluate the change of the wear rate and phase variation of the Zirconia before and after the sintering after the grinding by a high speed equipment manufactured for the Zirconia. Methods: The specimen of the sintered Zirconia was manufactured as size of $15mm{\times}15mm{\times}2mm$. The grinding has been applied to each of all pieces of each test groups for a minute fit for each condition at same speed of 50,000 rpm by a diamond bur at high speed handpiece with injection of the air and water. For the observation of the surface before and after the sintering of the each test piece, the cross section of it was observed as 100 magnification by a scanning electron microscope after it was coated by PT, and the diffraction analysis was performed by XDR to compare the crystal phase of the Zirconia. The average surface roughness value of all specimens were evaluated. The wear test was performed at room temperature by applying a load of 1kg for 120,000 cycles for the chewing period 6 months. Wear was analyzed for the enamel cusps by measurement of the vertical substance loss with a laser scanner. Conclusion: The phase variation from the tetragonal phase to the monoclinic phase was confirmed in the test group of the pre-sintered Zirconia after the grinding, and the value of the surface roughness and the wear rate was increased in experimental group.