• Title/Summary/Keyword: Laser reflectance light

Search Result 18, Processing Time 0.025 seconds

Apple Quality Measurement Using Hyperspectral Reflectance and Fluorescence Scattering (하이퍼 스펙트랄 반사광 및 형광 산란을 이용한 사과 품질 측정)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Hyperspectral reflectance and fluorescence scattering have been researched recently for measuring fruit post-harvest quality and condition. And they are promising for nondestructive detection of fruit quality. The objective of this research was to develop a model, which measure the quality of apple by using hyperspectral reflectance and fluorescence. A violet laser (408 nm) and a quartz tungsten halogen light were used as light sources for generating laser induced fluorescence and reflectance scattering in apples, respectively. The laser induced fluorescence and reflectance of 'Golden Delicious' apples were measured by using a hyperspectral imaging system. Fruit firmness, soluble solids and acid content were measured using standard destructive methods. Principal component analyses were performed to extract critical information from both hyperspectral reflectance and fluorescence data and this information was then related to fruit quality indexes. The fluorescence models had poorer predictions of the three quality indexes than the reflectance models. However, the prediction models of integrating fluorescence and reflectance performed consistently better than the individual models of either reflectance or fluorescence. The correlation coefficient for fruit firmness, soluble solid content, and tillable acidity from the integrated model was 0.86, 0.75, and 0.66 respectively. Also the standard errors were 6.97 N, 1.05%, and 0.07% respectively.

Study on Algorithm of Micro Surface Roughness Measurement Using Laser Reflectance Light (레이저 반사광을 이용한 미세 표면 거칠기 측정 알고리즘에 관한 연구)

  • Choi, Gyu-Jong;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.347-353
    • /
    • 2008
  • Reflected light can be decomposed into specular and diffuse components according to the light reflectance theory and experiments. The specular component appears in smooth surfaces mainly, while the diffuse one is visible in rough surfaces mostly. Therefore, each component can be used in forming their correlations to a surface roughness. However, they cannot represent the whole surface roughness seamlessly, because each formulation is merely validated in their available surface roughness regions. To solve this problem, new approaches to properly blend two light components in all regions are proposed in this paper. First is the weighting function method that a blending zone and rate can be flexibly adjusted, and second is the neural network method based on the learning from the measurement data. Simulations based on the light reflectance theory were conducted to examine its performance, and then experiments conducted to prove the enhancement of the measurement accuracy and reliability through the whole surface roughness regions.

Evaluation of Diffuse Reflectance in Multi-layered Tissue for High Intensity Laser Therapy

  • Lee, Sangkwan;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.205-212
    • /
    • 2013
  • Pain is one of the quite common symptoms in clinics and many treatment methods have been applied to relieve pain. Among the treatments, high-intensity light therapy for pain has been introduced, but this therapy has not been fully supported by confirmed efficacy due to the absence of quantitative assessments and treatment feedback data in real time. In this study, the evaluation of light distribution in tissue was performed with current high-intensity light sources quantitatively using light-tissue interaction simulations. The diffuse reflectance in tissue was generated using Monte Carlo simulation that traces photons as they undergo multiple scattering and absorption within each tissue layer (skin, fat, and muscle) and within multi-layered tissue. The results showed that the highest diffuse reflectance and the deepest penetration of tissue were achieved at ${\lambda}$=830 nm when compared with other wavelengths like ${\lambda}$=650 nm, 980 nm and 1064 nm.

Development of microscopic surface profile estimation algorithm through reflected laser beam analysis (레이저 반사광 분석을 통한 미세 표면 프로파일 추정 알고리즘의 개발)

  • Seo Young-Ho;Ahn Jung-Hwan;Kim Hwa-Young;Kim Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.64-71
    • /
    • 2005
  • In order to measure surface roughness profile, stylus type equipments are commonly used, but the stylus keeps contact with surface and damages specimens by its tip pressure. Therefore, optics based measurement systems are developed, and light phase interferometer, which is based on light interference phenomenon, is the most noticeable research. However, light interference based measurements require translation mechanisms of nano-meter order in order to generate phase differences or multiple focusing, thus the systems cannot satisfy the industrial need of on-the-machine and in-process measurement to achieve factory automation and productive enhancement. In this research, we focused light reflectance phenomenon rather than the light interference, because reflectance based method do not need translation mechanisms. However, the method cannot direct]y measure surface roughness profile, because reflected light consists of several components and thus it cannot supply surface height information with its original form. In order to overcome the demerit, we newly proposed an image processing based algorithm, which can separate reflected light components and conduct parameterization and reconstruction process with respect to surface height information, and then confirmed the reliability of proposed algorithm by experiment.

Characteristics of the Laser Displacement Sensor Using Optical Triangulation Method (광삼각법을 이용한 레이저 변위 센서의 특성 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.40-50
    • /
    • 1999
  • Recently, a laser displacement sensor is widely used for the manufacturing automation. The sensor is generally composed of a diode laser and a light receiving device. The diode laser emits a laser beam and the receiving device detects the light reflected from the measured object. The object position is obtained based upon triangulation method. As a light receiving device, a PSD is usually utilized since its structure is very simple and rugged and has a high accuracy. Although the theoretical relationship for this sensor had been developed, the characteristics of the sensor have not been much experimentally studied. In this paper, several experimental results will presented. The measurement accuracy is affected by the surface conditions such as the reflectance characteristics, the angle of the object's surface and the laser intensity. In addition, it is found that the PSD and the signal processing circuit have nonlinearities and showed that those nonlinearities can be reduced by controlling the emitting laser intensity.

  • PDF

Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy (근적외선 확산반사 분광법을 이용한 흉터치료 평가)

  • Jang, I.J.;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

A Robust Algorithm for Roughness Laser Measurement based on Light Power Regulation against Specimen Changes

  • Seo Young Ho;Ahn Jung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1131-1137
    • /
    • 2005
  • Methods for measuring surface roughness based on light reflectivity have advantages over methods based on light interference or diffraction, especially in in-situ, on-the-machine and in-process applications. However, measurement inconsistencies caused by changes in the specimen are still a drawback for field applications. In this study, we propose a new feedback-based algorithm to enhance the consistency against changes in the specimen. The algorithm is deduced from simulations based on light reflectance theory with typical modeled surfaces. The proposed method is similar to a digital controller and regulates the power of reflected light. Experiments varying heights and materials, verified the improvements in robustness of the method against measurement disturbances caused by specimen changes.

Fiber Laser를 이용한 다결정 태양전지 Surface Texturing

  • Kim, Tae-Hun;Kim, Seon-Yong;Go, Ji-Su;Park, Hong-Jin;Kim, Gwang-Yeol;Choe, Byeong-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.270-270
    • /
    • 2009
  • The surface texturing technology is one of the methods to improve the efficiency of crystalline silicon solar cell. This process reduced the reflectance at the surface by the so-called double bounce effect and increased the light trapping. Among these surface texturing technology, the laser texturing is effective for multi-crystalline silicon solar cells which have random crystallographic directions. We investigated the characteristics of laser processing on the surface of the multi-crystalline silicon solar cells using the fiber laser.

  • PDF

Monte Carlo Simulation on Light Distribution in Turbid Material (혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.

A Study on Thermal Conductivity Measurement and Optical Characteristics of Thin Films (박막의 열물성 측정 및 광학특성 연구)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2202-2207
    • /
    • 2007
  • The present article investigates experimentally and theoretically thermal and optical characteristics of thin film structures through measurement of thermal conductivity of Pyrex 7740 and reflectance in silicon thin film. The $3{\omega}$ method is used to measure thermal conductivity of very thin film with high accuracy and the optical characteristics in thin films are studied to examine the influence of incidence angle of light on reflectance by using the CTM(Characteristics Transmission Method) and the 633 nm He-Ne laser reflectance measurement system. It is found that the estimated reflectance of silicon show good agreement with experimental data. In particular, the present study solves the EPRT(Equation of Phonon Radiative Transport) which is based on Boltzmann transport equation for predicting thermal conductivity of nanoscale film structures. From the results, the measured thermal conductivity is in good agreement with the previous published data. Moreover, thermal conductivities are estimated for different film thickness. It indicates that as film thickness decreases, thermal conductivity decreases substantially due to internal scattering.