• Title/Summary/Keyword: Laser range sensor

Search Result 215, Processing Time 0.034 seconds

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation (정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Eom, Tae-Bong;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

Navigation Technique of Unmanned Vehicle Using Potential Field Method (포텐셜 필드 기법을 이용한 무인차량의 자율항법 개발)

  • Lee, Sang-Won;Moon, Young-Geun;Kim, Sung-Hyun;Lee, Min-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • This paper proposes a real-time navigation algorithm which integrates the artificial potential field (APF) for an unmanned vehicle in the unknown environment. This approach uses repulsive potential function around the obstacles to force the vehicle away and an attractive potential function around the goal to attract the vehicle. In this research, laser range finder is used as range sensor. An obstacle detected by the sensor creates repulsive vector. Differential global positioning system (DGPS) and digital compass are used to measure the current vehicle position and orientation. The measured vehicle position is also used to create attractive vector. This paper proposes a new concept of potential field based navigation which controls unmanned vehicle's speed and steering. The magnitude of repulsive force based on the proposed algorithm is designed not to be over the magnitude of attractive force while the magnitude is increased linearly as being closer to obstacle. Consequently, the vehicle experiences a generalized force toward the negative gradient of the total potential. This force drives the vehicle downhill towards its goal configuration until the vehicle reaches minimum potential and it stops. The effectiveness of the proposed APF for unmanned vehicle is verified through simulation and experiment.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

A Deep Convolutional Neural Network Based 6-DOF Relocalization with Sensor Fusion System (센서 융합 시스템을 이용한 심층 컨벌루션 신경망 기반 6자유도 위치 재인식)

  • Jo, HyungGi;Cho, Hae Min;Lee, Seongwon;Kim, Euntai
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.

Temperature and Concentration measurement using Semi-conductor diode laser (반도체레이져를 이용한 온도 및 농도의 계측)

  • Chung, D.H.;Noh, D.S.;Ikeda, Yuji
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.168-174
    • /
    • 2000
  • A diode laser sensor system based on absorption spectroscopy techniques has been developed to measure $CO_2$ concentration and temperature non-intrusively in high temperature combustion environments using a 2.0 ${\mu}m$ DFB(Distributed Feedback) laser. Two optics was fabricated in pig-tail fashion and all optical components were implemented in a single box. The evolution of measurement sensitivity was done using test cell by changing sweep frequency and $CO_2$ concentration. Gas temperature was determined from the ratio of integrated line strengths. Species concentration was determined from the integrated line intensity and the measured temperature. The result show that the system has 2% error in wide operation frequency range and accuracy of $CO_2$ concentration was about 3%. The system was applied to measure temperature and concentration in the combustion region of a premixed $CH_4$ +air triangular flame. The measurement results of gas temperature agreed well with thermocouple results. Many considerations were taken into account to reduce optical noise, etalon effect, beam steering and base line matching problem. The evaluations results and actual combustion measurement demonstrate the practical and applicability for in-situ and real time combustion monitoring in a practical system.

  • PDF

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Fabrication and Analysis of Characteristics of PRT using High-fine Laser Trimming Technology (고정밀 레이저 가공 기술을 이용한 PRT 제작 및 특성 분석)

  • 노상수;서정환;정귀상;김광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2003
  • In this paper, we fabricated PRT(platinum resistance thermometers) with the trimming technology using high fine laser system. U. V.(wavelength: 355nm) laser was mainly used for adjusting Pt thin films resistors to 100Ω at 0$^{\circ}C$. Internationally, the accepted A-class tolerance of temperature sensor is ${\pm}$0.06Ω at 0$^{\circ}C$. according to DIN EN 60751. The width of trimmed lines was about 10$\mu\textrm{m}$ and the best trimming conditions of Pt thin films were power : 37mW, frequency : 200Hz and bite size:1.5$\mu\textrm{m}$. And 96 resistors, fabricated by photolithography and etching process, have 79∼90Ω and 91∼102Ω as the proportion of 45.7% and 57.3%, respectively. As result of sitting Pt thin films resistors to the target value(109.73Ω at 25$^{\circ}C$), 82.3% of all resistors had the tolerance within ${\pm}$0.03Ω and the others(17.7%) were within ${\pm}$0.06Ω of A-class tolerance. The PRTs which wore fabricated in this research had excellent characteristics as follows; high accuracy, international standard TCR(temperature coefficient of resistance) value, long-term stability, wide temperature range, good linearity and repeatability, rapid response time, etc.

A Study for Vision-based Estimation Algorithm of Moving Target Using Aiming Unit of Unguided Rocket (무유도 로켓의 조준 장치를 이용한 영상 기반 이동 표적 정보 추정 기법 연구)

  • Song, Jin-Mo;Lee, Sang-Hoon;Do, Joo-Cheol;Park, Tai-Sun;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.315-327
    • /
    • 2017
  • In this paper, we present a method for estimating of position and velocity of a moving target by using the range and the bearing measurements from multiple sensors of aiming unit. In many cases, conventional low cost gyro sensor and a portable laser range finder(LRF) degrade the accuracy of estimation. To enhance these problems, we propose two methods. The first is background image tracking and the other is principal component analysis (PCA). The background tracking is used to assist the low cost gyro censor. And the PCA is used to cope with the problems of a portable LRF. In this paper, we prove that our method is robust with respect to low-frequency, biased and noisy inputs. We also present a comparison between our method and the extended Kalman filter(EKF).

A Visibility Sensor using a 905nm Pulsed Mode Laser (905nm 펄스 레이저를 이용한 시정계 센서)

  • 김광웅;전호경;송동혁;박정호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.210-211
    • /
    • 2002
  • 산업의 발전과 급속한 대도시화는 환경오염이라는 새로운 사회적 이슈를 발생시켰다. 시정(Visual Range)이란 대기의 혼탁도를 나타내는 기상요소로서, 정상적인 시각을 가진 사람이 목표를 식별할 수 있는 최대거리를 의미한다 시정은 대기오염을 판단할 수 있는 척도이며, 항만 및 공항 등에서는 인명 및 재산과 직접적인 관계를 갖고 있어, 최근 시정 측정에 대한 중요성이 높아지고 있다. 본 논문에서는 배경 잡음에 좋은 특성을 가지며, 보디- 정확한 시정 측정을 위하여 905nm 펄스 모드 반도체 레이저 다이오드를 이용한 시정계 센서를 제작하여 실험하였다. (중략)

  • PDF

Navigation Using Fuzzy Control in Mobile Robot (이동로봇에서 퍼지제어를 이용한 방법)

  • 권대갑;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.784-789
    • /
    • 1994
  • In the mobile robot research, monitoring the present status and self-navigating the robot in various environment are signifiant. This paper treates a navigation algorithm using a fuzzy logic and a sensor system - laser range finder. The navigation algorithm using a fuzzy logic is achieved by organizing the knoweledge base for self-navigation of mobile robot. In order that mobile robot is economically arrived the goal, the knowledge base is applied to acquire the informations of moving distance, direction, and velocity in every cycle time.

  • PDF