• Title/Summary/Keyword: Laser output

Search Result 777, Processing Time 0.022 seconds

High-beam-quality 2-kW-class Spectrally Combined Laser Using Narrow-linewidth Ytterbium-doped Polarization-maintaining Fiber Amplifiers (협대역 이터븀 첨가 편광유지 광섬유 증폭기를 이용한 고품질 2 kW급 파장제어 빔 결합 레이저)

  • Jeong, Hwanseong;Lee, Kwang Hyun;Lee, Junsu;Kim, Dong-Joon;Lee, Jung Hwan;Jo, Minsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.218-222
    • /
    • 2020
  • In this paper, we have experimentally demonstrated a 2-kW-class spectrally-beam-combined laser with high beam quality, using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers. Five fiber amplifiers with different center wavelengths were implemented for the spectrally-beam-combined laser. The center wavelengths of the five amplifiers were 1062, 1063, 1064, 1065, and 1066 nm, respectively. A phase-modulated laser diode was used as a seed source for each amplifier. The seed sources were modulated by filtered pseudorandom-bit-sequence (PRBS) signals 5 GHz in linewidth. The polarization-maintaining large-mode-area fiber with a core size of 30 ㎛ was used as a delivery fiber to mitigate the stimulated Brillouin scattering (SBS) effect. The laser beams from five amplifiers were spectrally combined by a multilayer dielectric diffraction grating. The maximum output power and beam quality M2 of the combined laser were measured to be 2.3 kW and 1.74, respectively.

Fabrication and performance analysis of cost-effective fiber grating lasers for WDM-PON systems (WDM-PON 시스템용 저가형 Fiber Grating Laser의 제작 및 성능 분석)

  • Cho, Seung-Hyun;Lee, Woo-Ram;Lee, Jie-Hyun;Park, Jae-Dong;Kim, Byoung-Whi;Kang, Min-Ho;Shin, Dong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Fiber-Bragg-grating external cavity laser(FGL) modules were fabricated and experimentally analyzed. Proposed as a cost-effective solution for optical sources in the WDM-PON access network, FGL modules were packaged to TO-CAN type. We obtained a low threshold current of 13 mA, and an optical output power of 3.6 mW with a bias current of 60 mA at $25^{\circ}C$. The lasing wavelength dependencies on current and temperature were as small as 5.2 pm/mA and 30 pm/$^{\circ}C$, respectively. These change rates of the wavelength with the temperature and current are smaller than those of the DFB laser. Single-mode oscillations with the side-mode suppression ratio(SMSR) over 30 dB are maintained above the threshold current level. The FGL modules can be directly modulated at 155 Mbps, PRBS(2$^{23}$ -1) NRZ signal. Through the BER plots, we did not see the significant degradations before and after the transmission over 20km of the SMF at 155 Mb/s.

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes (Buried-Ridge Waveguide Laser Diode 제작 및 특성평가)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.669-673
    • /
    • 2003
  • We fabricated a buried-ridge waveguide laser diode (B-RWG LD) which has more advantages for obtaining lateral single mode operation on the same ridge width and for the planarization of the device surface, compared to the conventional RWG LD. In this LD, the difference of the lateral effective refractive index can be controlled by the thickness of the InGaAsP layer which is grown on the active and the p-InP layers. The InGaAsP multiple quantum well was grown on a n-InP substrate by the CBE. The buried ridge structure was formed by selective wet etchings, followed by liquid phase epitaxy methods. The fabricated LD with the ridge width of 7 ${\mu}{\textrm}{m}$ showed a linear increase of the optical power up to 20 ㎽ without any kinks and a saturated output power of more than 80 ㎽. By measuring the far field pattern, we demonstrate that LDs with the ridge widths of 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$ were operated in a lateral single mode up to 2.7I$_{th}$ and 2.4I$_{th}$, respectively.ely.

Air Density Measurement in a Narrow Test Section Using a Laser Absorption Spectroscopy (레이저 흡수 분광법을 사용한 좁은 시험 구간 내 공기 밀도 측정)

  • Shim, Hanseul;Jung, Sion;Kim, Gyeongrok;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.893-900
    • /
    • 2021
  • In this study, air density in a narrow test section is measured using a laser absorption spectroscopy system that detects oxygen absorption lines. An absorption line pair at 13156.28 and 13156.62 cm-1 are detected. A gas chamber with a height of 40 mm is used as a narrow test section. A triangular spiral-shaped laser path is applied in the gas chamber to amplify absorption strength by extending laser beam path length. A well-known logarithm amplifier and a secondary amplifier are used to electrically amplify absorption signal. An AC-coupling is applied after the logarithm amplifier for signal saturation prevention and noise suppression. Procedure of calculating spectral absorbance from output signal is introduced considering the logarithm amplifier circuit configuration. Air density is determined by fitting the theoretically calculated spectral absorbance to the measured spectral absorbance. Test conditions with room temperature and a pressure range of 10~100 kPa are made in a gas chamber using a Bourdon pressure gauge. It is confirmed that air density in a narrow test section can be measured within a 16 % error through absorption signal amplification using a triangular spiral-shaped beam path and a logarithm amplifier.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

Cascaded Raman fiber amplifier operating at 1.3.mu.m using WDM couplers

  • Chang, Do-Il;Kong, Hong-Jin;Chernikov, S.V.;Guy, M.-J.;Taylor, J. R.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • We report effcient cascaded Raman generation and signal amplification at 1.3.mu.m achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at 1.064.mu.m. In a resonant cascaded geometry, this generates the third Stokes line at 1.24.mu.m, which acts as a pump for signal wavelength around 1.3.mu.m. A DFB laser operating at 1.315.mu.m is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

The Output Characteristics and the Optimization of Parallel-mesh Circuit of a Pulsed Nd:YAG Laser by Using a Circular Cavity (원형 Cavity를 이용한 펄스형 Nd:YAG레이저의 출력특성 및 병렬메쉬 회로의 최적화)

  • Yang, D.M.;Kim, B.G.;Park, K.R.;Hong, J.H.;Kang, W.;Kim, W.Y.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2201-2203
    • /
    • 1999
  • In this study, we have designed and manufactured not a present elliptic cavity but a circular cavity and we have experimented the operational characteristics. As a result, we obtained the maximum efficiency of 2.1 %. It didn't have any difference compared with elliptic cavity. A circular cavity is much more compact, so far easier to be manufactured than a elliptic cavity. And it can be made at a low cost. At the input energy, parameter $\alpha$, input voltage, and pulse width were in the same condition, we have decided to the optimization of the mesh number of a parallel-mesh circuit which was connected with main power supply.

  • PDF

Generation of diffraction free beam from Nd:YAG ring laser (고리형 Nd:YAG 레이저를 이용한 무회절 광속 발진)

  • 최승호;김기식;박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.107-110
    • /
    • 1997
  • We generated a diffraction free beam from Nd:YAG laser with an NBUR (negative branch unstable ring) resonator. The field inside the resonator had a plane wavefront and a homogeneous intensity distribution and the output beam through a scraper mirror of an annular type was used as a source. The outpur beam had an inner radius of 2.5 mm and an outer radius of 5 mm. In this experiment, we used a Fourier transformation lens with the focal length of 5 m to observe the far-field pattern. The lens was placed at a distance of the focal length from the scraper mirror and we found that the beam did not show any noticable diffraction over the distance of 13 m from the lens.

  • PDF