• Title/Summary/Keyword: Laser extinction technique

Search Result 27, Processing Time 0.02 seconds

Spray Measurement Using Optical Line Patternator at High Ambient Pressure (광학 선형 패터네이터를 이용한 고압 환경 하에서의 분무 측정)

  • Koh Hyeonseok;Shin Sanghee;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • Optical Line Patternator(OLP) has been applied to get a distribution of the spray at high ambient pressure. OLP is a combined technique of extinction measurement and image processing. The attenuated intensity of laser beam after traversing spray region was measured by using a photo-detector, and the line image of Mie-scattering was captured simultaneously in the path of each laser beam by using a CCD camera. The distribution of extinction coefficient in the spray is obtained by processing these data with the algebraic reconstruction technique. From the distribution of extinction coefficient, the surface distribution of spray can be reconstructed. OLP does not use laser sheet but use laser beam so that the noise effect of multiple scattering, caused by increasing number density of droplet in high pressure environment, is reduced drastically. OLP is expected as a suitable method which can investigate the characteristics of relatively large spray under the high pressure environment such as liquid rocket engine.

  • PDF

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF

A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames (정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

Quantitative Measurements of Soot Particles in a Laminar Diffusion Flame Using a LII/LIS Technique (LII/LIS 기법을 이용한 층류확산화염 매연입자의 정량화)

  • Chung, J.W.;Lee, W.;Han, Y.T.;Kim, B.S.;Lee, C.B.;Kim, D.J.;Lee, K.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.113-121
    • /
    • 2002
  • The distribution of volume fraction, mean diameter and number density of soot particles are measured quantitatively in a co-flow ethylene diffusion flame using a simultaneous LII/LIS measurement technique. The LII/LIS system and the measured values are, respectively, calibrated and evaluated by comparing to the informations obtained from laser light. extinction/scattering experiments, LII signal shows some sensitivity to the laser light intensity when laser power density exceeds a certain value(threshold). It is also found that there is an optimal laser intensity and a delay time in order to obtain the best result using the simultaneous LII/LIS measurement technique.

  • PDF

A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures (고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구)

  • 배명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

Spray Visualization Using Laser Diagnostics (레이저 계측법을 이용한 분무 가시화)

  • Yoon Youngbin;Koh Hyeonseok;Kim Dongjun;Khil Taeock
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.3-13
    • /
    • 2005
  • The optical patterantor provides the high resolution and quantitative information of the spray. Fuel distribution and Sauter Mean Diameter (SMD) can be measured from fluorescence and Mie-scat-tering images. To correct the attenuation of the laser beam and signal in dense spray region, the method to find the geometric mean of the signal intensities obtained from two cameras was evaluated and verified in a solid-cone spray. In high pressure environment, the increased number density of the droplets cause multiple scattering. The optical patternation technique using a laser beam instead of a laser sheet was applied to minimize the multiple scattering problem. The pattern of a coaxial spray was changed from hollow-cone to solid-cone shape, and the spray angle was reduced as the ambient pressure increased from 0.1 to 4.0 MPa.

  • PDF

Soot Formation in a Double-Concentric Diffusion Flame (동축 이중 확산화염의 매연 생성 특성)

  • Jurng, Jongsoo;Lee, Gyo-Woo;Ko, Bum-Seung;Kang, Kyung-tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1355-1362
    • /
    • 1999
  • An experimental study on a double-concentric diffusion flame(DDF) has been carried on in order to Investigate the characteristics of soot formation compared to a normal coflow diffusion flame(NDF). Laser extinction technique has been used for an ethylene($C_2H_4$) and air flame with various flow rates. Soot formation In the double-concentric diffusion flame was enhanced by the inner inverse diffusion flame due to the increase in flame temperature and also suppressed due to the nitrogen-dilution from the inner air. Soot concentration at the flame axis of DDF was higher than that of the NDF, mainly because of the increase of temperature by inner flame. However, the maximum soot volume fraction of DDF was lower than NDF at the outer side of the flame, mainly due to the effect of nitrogen-dilution from the inner air.

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, Sang-Min;Hwang, Jun-Young;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 2003
  • A convolution algorithm combined with Fourier transformation has been applied to the tomographic reconstruction of asymmetric soot structure to identify the local soot volume fraction distribution. Line-of-sight integrated data from light extinction measurement with multi-angular scanning formed basic information for the deconvolution. Multi-peak following interpolation technique was applied to obtain the effect of increasing number of scanning angles. Height-by-height reconstructed soot volume fraction distribution was compared with laser-induced incandescence signals.

  • PDF

A Four-Channel Laser Array with Four 10 Gbps Monolithic EAMs Each Integrated with a DBR Laser

  • Sim, Jae-Sik;Kim, Sung-Bock;Kwon, Yong-Hwan;Baek, Yong-Soon;Ryu, Sang-Wan
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.533-536
    • /
    • 2006
  • A distributed Bragg reflector (DBR) laser and a high speed electroabsorption modulator (EAM) are integrated on the basis of the selective area growth technique. The typical threshold current is 4 to 6 mA, and the side mode suppression ratio is over 40 dB with single mode operation at 1550 nm. The DBR laser exhibits 2.5 to 3.3 mW fiber output power at a laser gain current of 100 mA, and a modulator bias voltage of 0 V. The 3 dB bandwidth is 13 GHz. A 10 Gbps non-return to zero operation with 12 dB extinction ratio is obtained. A four-channel laser array with 100 GHz wavelength spacing was fabricated and its operation at the designed wavelength was confirmed.

  • PDF

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF