• Title/Summary/Keyword: Laser energy

Search Result 1,580, Processing Time 0.026 seconds

In vivo comparison between the effects of chemically modified hydrophilic and anodically oxidized titanium surfaces on initial bone healing

  • Lee, Hyo-Jung;Yang, Il-Hyung;Kim, Seong-Kyun;Yeo, In-Sung;Kwon, Taek-Ka
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.94-100
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the combined effects of physical and chemical surface factors on in vivo bone responses by comparing chemically modified hydrophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydrophobic implant surfaces. Methods: Five modSLA implants and five anodized implants were inserted into the tibiae of five New Zealand white rabbits (one implant for each tibia). The characteristics of each surface were determined using field emission scanning electron microscopy, energy dispersive spectroscopy, and confocal laser scanning microscopy before the installation. The experimental animals were sacrificed after 1 week of healing and histologic slides were prepared from the implant-tibial bone blocks removed from the animals. Histomorphometric analyses were performed on the light microscopic images, and bone-to-implant contact (BIC) and bone area (BA) ratios were measured. Nonparametric comparison tests were applied to find any significant differences (P<0.05) between the modSLA and anodized surfaces. Results: The roughness of the anodized surface was $1.22{\pm}0.17{\mu}m$ in Sa, which was within the optimal range of $1.0-2.0{\mu}m$ for a bone response. The modSLA surface was significantly rougher at $2.53{\pm}0.07{\mu}m$ in Sa. However, the modSLA implant had significantly higher BIC than the anodized implant (P=0.02). Furthermore, BA ratios did not significantly differ between the two implants, although the anodized implant had a higher mean value of BA (P>0.05). Conclusions: Within the limitations of this study, the hydrophilicity of the modSLA surface may have a stronger effect on in vivo bone healing than optimal surface roughness and surface chemistry of the anodized surface.

Characteristics of two extended-cavity diode lasers phase-locked with a 9.2 CHz frequency offset (9.2 GHz 주파수 차이로 위상잠금된 두 외부 공진기 다이오드 레이저의 제작 및 특성 조사)

  • Kwon, Taek-Yong;Shin, Eun-Ju;Yoo, Dae-Hyuk;Lee, Ho-Sung;In, Min-Kyo;Cho, Hyuk;Park, Sang-Eon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.543-547
    • /
    • 2002
  • We have constructed two extended-cavity diode lasers which are phase-locked with a 9.2 GHz frequency offset. We adopted a digital servo circuit for the phase-locking. The relative linewidth of the phase-locked lasers was less than 2 Hz. Using the measured beat spectrum, we found the carrier concentration to be about 93 %. We measured phase noise and relative frequency stability of the lasers. The Allan deviation at the gate time of 20 s was $2.7{\times}10^{-19}$.

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Effect of Ga Addition on the Electrical and Structural Properties of (Zn,Mg)O Transparent Electrode Films (Ga 첨가량이 (Zn,Mg)O 투명전극 막의 전기적, 결정학적 특성에 미치는 영향)

  • Suh, Kwang-Jong;Wakahara, Akihiro;Yoshida, Akira
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.491-495
    • /
    • 2005
  • (Zn,Mg)O (ZMO) thin films doped with Ga $(0\~0.03mol\%)$ in the target source were prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$, and the effect of Ga contents on the properties of the electrical, optical and crystal properties of the deposited films was investigated. From X-ray diffraction patterns, ZMO film doped with $0.02 mol\%$ Ga showed crystal structure with c-axis preferred orientation, showing only the (0002) and (0004) diffraction peaks. In contrast, ZMO film doped with $Ga=0.03 mol\%$ showed a randomly oriented crystal structure. All the samples were highly transparent, showing the transmittance values of above $85\%$ in the visible region. For all the Ga doped ZMO films, the value of energy band gap was found to be about 3.5 eV, regardless of their Ga contents. From the Hall measurements, the resistivity and the carrier density for the ZMO film doped with $0.01 mol\%$ Ga were about $5\times10^{-4}\Omega-cm$ and $2\times10^{21}cm^{-3}$, respectively.

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.

A Study on the Optical Bistable Characteristic of a Multi-Section DFB-LD (다전극 DFB-LD의 광 쌍안정 특성에 관한 연구)

  • Kim, Geun-Cheol;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.1-11
    • /
    • 2002
  • A multi-section DFB-LD shows optical bistability subject to externally injected light signal, then it has potential applications such as wavelength conversion and optical logic gates. In this paper, we have studied the optical bistability in multi-section DFB-LD using split-step time-domain model. It is confirmed that the multi-section DFB-LD, which is excited inhomogeneously, shows bistability. The optical bistable characteristics are investigated when input light is injected into a absorptive region. Simulation results show that multi-section DFB-LD works as a flip-flop depending on the set-reset optical pulse which has a few ns in switching time and a few pj in switching energy, so that it can act as a optical logic device. Besides, if we change the carrier lifetime and the differential gain coefficient, it is expected that the response time of optical output signal can be reduced.

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.

Proteomic Analysis of the Aging-related Proteins in Human Normal Colon Epithelial Tissue

  • Li, Ming;Xiao, Zhi-Qiang;Chen, Zhu-Chu;Li, Jian-Ling;Li, Cui;Zhang, Peng-Fei;Li, Mao-Yu
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • In order to screen the aging related proteins in human normal colon epithelia, the comparative proteomics analysis was applied to get the two-dimensional electrophoresis (2-DE) profiles with high resolution and reproducibility from normal colon epithelial tissues of young and aged people. Differential proteins between the colon epithelia of two age groups were found with PDQuest software. The thirty five differential protein-spots were identified by peptide mass fingerprint (PMF) based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and database searching. Among them there are sixteen proteins which are significantly up-regulated in the colonic mucosal epithelia of young people group, which include ATP synthase beta chain, electron transfer flavoprotein alpha-subunit, catalase, glutathione peroxidase 1, annexin A2 and heat shock cognate 71 kDa protein, etc.; There are nineteen proteins which are significantly up-regulated in the colonic mucosal epithelia of aged people group, which include far upstream element-binding protein 1, nucleoside diphosphate kinase B, protein disulfide-isomerase precursor and VDAC-2, etc.. The identified differential proteins appear to be involved in metabolism, energy generation, chaperone, antioxidation, signal transduction, protein folding and apoptosis. The data will help to understand the molecular mechanisms of human colon epithelial aging.