References
- Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155-66. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
- Lausmaa J. Surface spectroscopic characterization of titanium implant materials. J Electron Spectros Relat Phenomena 1996;81: 343-61. https://doi.org/10.1016/0368-2048(95)02530-8
- Albrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983;50:255-61. https://doi.org/10.1016/0022-3913(83)90027-6
- Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int J Oral Maxillofac Implants 2001;16:333-42.
- Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, et al. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization. Clin Oral Implants Res 1997;8: 208-16. https://doi.org/10.1034/j.1600-0501.1997.080307.x
- Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009;20 Suppl 4:172-84. https://doi.org/10.1111/j.1600-0501.2009.01775.x
- Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000; 84:522-34. https://doi.org/10.1067/mpr.2000.111966
- Pilliar RM. Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dent 1998;7:305-14. https://doi.org/10.1097/00008505-199807040-00009
- Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 1994;28:1419-25. https://doi.org/10.1002/jbm.820281206
- Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, et al. Light-induced amphiphilic surfaces. Nature 1997; 388:431-2. https://doi.org/10.1038/41233
- Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 2000;15:331-44.
- Bico J, Thiele U, Quere D. Wetting of textured surfaces. Colloids Surf A Physicochem Eng Asp 2002;206:41-6. https://doi.org/10.1016/S0927-7757(02)00061-4
- Rupp F, Scheideler L, Eichler M, Geis-Gerstorfer J. Wetting behavior of dental implants. Int J Oral Maxillofac Implants 2011;26: 1256-66.
- Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006;76:323-34.
- Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 2004;25:1429-38. https://doi.org/10.1016/j.biomaterials.2003.08.015
- Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. Berlin: Springer; 2001. p.171-230.
- Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
- Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20 Suppl 4:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
- Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 2007;78:2171-84. https://doi.org/10.1902/jop.2007.070157
- Choi JY, Lee HJ, Jang JU, Yeo IS. Comparison between bioactive fluoride modified and bioinert anodically oxidized implant surfaces in early bone response using rabbit tibia model. Implant Dent 2012;21:124-8. https://doi.org/10.1097/ID.0b013e318249f283
- Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 2010;25:63-74.
- Iwai-Yoshida M, Shibata Y, Wurihan, Suzuki D, Fujisawa N, Tanimoto Y, et al. Antioxidant and osteogenic properties of anodically oxidized titanium. J Mech Behav Biomed Mater 2012;13:230-6. https://doi.org/10.1016/j.jmbbm.2012.01.016
- Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-43. https://doi.org/10.1016/j.actbio.2007.12.002
- Schuler RF, Janakievski J, Hacker BM, O'Neal RB, Roberts FA. Effect of implant surface and grafting on implants placed into simulated extraction sockets: a histologic study in dogs. Int J Oral Maxillofac Implants 2010;25:893-900.
- Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, et al. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A 2006;78:291-7.
- Wall I, Donos N, Carlqvist K, Jones F, Brett P. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 2009;45:17-26. https://doi.org/10.1016/j.bone.2009.03.662
- Hong J, Kurt S, Thor A. A hydrophilic dental implant surface exhibits thrombogenic properties in vitro. Clin Implant Dent Relat Res 2013;15:105-12. https://doi.org/10.1111/j.1708-8208.2011.00362.x
- Yeo IS, Han JS, Yang JH. Biomechanical and histomorphometric study of dental implants with different surface characteristics. J Biomed Mater Res B Appl Biomater 2008;87:303-11.
- Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol 1982;11:318-26. https://doi.org/10.1111/j.1600-0714.1982.tb00172.x
- Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111. https://doi.org/10.1016/0002-9416(84)90301-4
- Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 2004;75:1233-41. https://doi.org/10.1902/jop.2004.75.9.1233
- Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64.
- Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. J Clin Periodontol 2007;34:78-86. https://doi.org/10.1111/j.1600-051X.2006.01008.x
- Gottlow J, Barkarmo S, Sennerby L. An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res 2012;14 Suppl 1:e204-12. https://doi.org/10.1111/j.1708-8208.2012.00439.x
- Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 2004;15:381-92. https://doi.org/10.1111/j.1600-0501.2004.01082.x
- Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003;14:251-62. https://doi.org/10.1034/j.1600-0501.2003.00972.x
- Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res 2007;18:481-8. https://doi.org/10.1111/j.1600-0501.2007.01341.x
- Schmid J, Wallkamm B, Hammerle CH, Gogolewski S, Lang NP. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res 1997; 8:244-8. https://doi.org/10.1034/j.1600-0501.1997.080311.x
Cited by
- The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces vol.27, pp.4, 2015, https://doi.org/10.1007/s10856-016-5678-5
- Structure and shear strength of implants with plasma coatings vol.7, pp.3, 2016, https://doi.org/10.1134/s2075113316030102
- Effects of alkaline treatment for fibroblastic adhesion on titanium vol.13, pp.6, 2016, https://doi.org/10.4103/1735-3327.197043
- Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0170312
- Substrate roughness induces the development of defective E-cadherin junctions in human gingival keratinocytes vol.47, pp.2, 2015, https://doi.org/10.5051/jpis.2017.47.2.116
- Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/4025083
- Comparison between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants: In Vivo Study vol.20, pp.13, 2015, https://doi.org/10.3390/ijms20133267
- Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration vol.13, pp.1, 2020, https://doi.org/10.3390/ma13010089
- Biomimetic titanium implant coated with extracellular matrix enhances and accelerates osteogenesis vol.15, pp.18, 2015, https://doi.org/10.2217/nnm-2020-0047
- A comparison of bone conductivity on titanium screws inserted into the vertebra using different surface processing vol.7, pp.None, 2015, https://doi.org/10.1186/s40634-020-00250-w
- Acceleration of Bone Formation and Adhesion Ability on Dental Implant Surface via Plasma Electrolytic Oxidation in a Solution Containing Bone Ions vol.11, pp.1, 2015, https://doi.org/10.3390/met11010106
- Multifunctional natural polymer-based metallic implant surface modifications vol.16, pp.2, 2021, https://doi.org/10.1116/6.0000876
- Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model vol.11, pp.11, 2015, https://doi.org/10.3390/coatings11111426