• Title/Summary/Keyword: Laser diodes

Search Result 187, Processing Time 0.029 seconds

A Two-dimensional Numerical Analysis of Semiconductor Laser Diodes) (반도체 레이저 디이오드의 2차원 수치해석)

  • 김형래;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.17-28
    • /
    • 1995
  • In this paper, we developed a two-dimensional numerical simulator which could analyze the stripe geometry semiconductor laser diodes by modifying the commercial semiconductor device simulator, MEDICI. In order to study the characteristics of semiconductor laser diodes, it is necessary to solve the Helmholtz wave equation and photon rate equation in addition to the basic semiconductor equations. Also the recombination rates due to the spontaneous and the stimulated emissions should be included, which are very important recombination mechanisms in semiconductor laser diodes. Therefore, we included the solution routines which analyzed the Helmholtz wave equation and the photon rate equation and two important recombination rates to simulate the semiconductor laser diodes. Then we simulated the gain-guiding and index-guiding DH(Double Heterostructure) semiconductor laser diodes to verify the validity of the implemented functions. The results obtained from simulation are well consistent with the previously published ones. This allows us to know the operating characteristics of DH laser diodes and is expected to use as a tool for optimum design.

  • PDF

Missing Modes in Fabry-Perot Laser Diodes (Fabry-Perot 레이저 다이오드의 Missing Mode)

  • Lee, Dong-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Mode missing of Fabry-Perot laser diodes has been modeled using the time domain laser model(TDLM). Fabry-Perot laser diodes that have structure of ripple in the waveguide of active layer or defects inside the active layer were simulated. For accurate simulation, the nonlinear effects were included such as spatial hole burning(SHB) and gain saturation. From the simulation results, it was founded that the defect inside the active layer in laser diodes has a strong influence on mode missing rather than the waveguide ripple. The simulation results are confirmed with the fabricated Fabry-Perot laser diodes by measuring the longitudinal mode spectra as a function of temperature from $25[^{\circ}C]\;to\;85[^{\circ}C]$.

Filamentation and α-factor of broad area laser diodes (대면적 레이저 다이오드의 필라멘테이션과 α-factor)

  • Han, Il-Ki;Her, Du-Chang;Lee, Jung-Il;Lee, Joo-In
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.319-323
    • /
    • 2002
  • 1.55 ${\mu}m$multi-quantum well (MQW) broad area laser diodes with different linewidth enhancement factors ($\alpha{-factor}$) of 2 and 4 were fabricated. The far-fields of the laser diodes were measured. It was observed that the full width at half maximum (FWHM) of the far-fields and the filamentations were reduced in the laser diodes for which the value of the $\alpha{-factor}$ was small. As injection current increased, the FWHM of the far-field also increased regardless of the a-factor. This phenomenon was explained by reduction of filament spacing as injection current increased.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Characteristic ependences of High Power Semiconductor Laser on AR Coating (AR Coating에 따른 고출력 반도체 레이저의 특성변화)

  • 오윤경;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.29-34
    • /
    • 1995
  • Mirror coating is applied to laser facets to improve properties of edge emitting laser diodes. In this experiment, InGaAsP/GaAs high power laser diodes were studied with respect to different degrees of anti-reflective coating. Sputterred $Al_{2}$O$_{3}$ was used as the coating material and the HR coating was kept constant at 90%. Threshold current density, differential quantum efficiency, emission wavelength and the operating current at 500mW were measured for a range of AR coating and compared with theoretically calculated values; that showed good agreements. Precise wavelength control is important for laser diodes for solid state pumping because of small absorption bandwidth. In addition, since these lasers operate under CW condition, a lowest possible operating current for a given power is desired in order to minimize the heat produced. From the results of this experiment, we were able to obtain a optimum range of AR coatings for minimum operating current. The wavelength can be varied up to 4nm within this range.

  • PDF

Non-Ideal Electrical Derivative Characteristics and Their Implications in Laser Diodes (레이저 다이오드의 비이상적인 전류-전압 미분특성에 관한 연구)

  • Sang Bae Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.830-839
    • /
    • 1991
  • The correlation between electrical (derivativer) characteristics and electro-optical conversion characteristics of laser diodes has been investigated both theoretically and experimentally with emphasis on the nonideal behavior. Laser diodes are electrically pumped devices with the current resulting from the carrier recombination dynamics, and their junction voltage is given by the separation of the quasi-Fermi levels which are determined by the injected carrier concentration. Thus most of the informaiton related to laser diode operation characteristics is reveraled in the electrical characteristics which are relatively simple to measure with sufficient accuracy. Therefore the measurement of electrical characteristics and their derivatives is a very useful tool of laser diode characteristion.

  • PDF

Dynamic analysis of widely tunable laser diodes integrated with sampled-and chirped-grating distributed Bragg reflectors and an electroabsorption modulator

  • Kim, Byoung-Sung;Youngchul Chung;Kim, Sun-Ho
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.28-36
    • /
    • 1998
  • Widely tunable diodes integrated with periodically sampled and chirped DBR(distributed Bragg reflector) and an EA(electroabsorption) modulator are analyzed dynamically using the improved largesinal time-domain model. The tuning characteristics of sampled- and chirped-grating DBR laser diodes are demonstrated theoretically. The results of the simulation agree well with those of the experiment. And the intensity-modulation properties of the laser diodes integrated with an EA modulator are calculated. It is shown that the external modulation has the lower frequency chirp by 1/20 for the same extinction ratio than the direct modulation, and also the short pulse train can be generated using the optical gating of an EA modulator.

  • PDF

Electrical Derivative Characteristics of Lsaer Diodes (레이저 다이오드의 전기적 미분특성에 관한 연구)

  • 김창균;도만희;김상배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.38-46
    • /
    • 1993
  • Based on the close correlation between the optoelectronic and electrical characteristics of laser diodes, this paper is to present an exact model for electrical characteristics of laser diodes with bulk active layers so that the optoelectronic characteristics may be estimated from the electrical Characteristics. Among the considered models, the most exact model is shown to be one which uses the Fermi-Dirac integral and the bimolecular recombination and takes into account the energy-gap shrinkage with the injected carrier density.

  • PDF

Junction Temperature of Quantum Dot Laser Diodes Depending on the Mesa Depth (양자점 레이저 다이오드의 식각 깊이에 따른 접합온도 측정)

  • Jeong, Jung-Hwa;Han, Il-Ki;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.555-559
    • /
    • 2008
  • Junction temperature of quantum dot laser diodes is investigated by utilizing forward voltage-temperature method. In the case of ridge type laser diodes with deep mesa the increasing rate of junction temperature to current is about 0.05 K/mA, while in the case of shallow mesa the increasing rate is about 0.07 K/mA. It is explained that the relatively low increasing rate in the deep mesa results from the heat expansion to the lateral direction of mesa.

Fabrication of Laser Diodes using Beam-Lead and its thermal characteristics (Beam-Lead를 이용한 Laser Diode의 제작과 열저항 특성)

  • 조성대
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.69-72
    • /
    • 1990
  • For the effective heat transfering in Lser Diodes, Beam-Lead structure were introduced which is applicable to hybrid Optoelectronic Integrated Circuits. A 5-layer planar structure Laser Diode is fabricated and Beam-Lead is made by Au plating. And carrier was made by etching Si substrate and LD was mounted on a carrier. The thermal resistance was measured and we could certain that Beam-Lead structure behaves well as a heat sink.

  • PDF