• Title/Summary/Keyword: Laser cutting

Search Result 370, Processing Time 0.03 seconds

The Characteristics of the Milling Tool Deflection According to the Variation of Helix Angle (헬릭스각의 변화에 따른 밀링공구의 변위 특성 연구)

  • Maeng, Min-Jae;Chung, Joon-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.860-866
    • /
    • 2004
  • In the end milling operation the deflection of the cutter is an important factor affecting the accuracy of machining, with implications on the selection of cutting parameters and economics of the operation. Several studies were devoted to the end mill deflection and its effects, notably, providing a useful insight into the problem. Although the deflection affects adversely the accuracy, the flexibility of the cutter is beneficial in attenuating the overload in a sudden transient situation, as well as in attenuating chatter. The deflection of the end mill was studied both experimentally with strain gauge, tool dynamometer, laser measuring apparatus and on a finite element model of the cutting using ANSYS software. The deflection of machining tool with various helix angles was studied with FEM simulation and experiment. ANSYS analysis performed on the finite element model of the end mill provides deflection results which agree within 15.0% with the experimental ones.

Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe (초정밀 가공기의 실시간 운동오차 및 열변형오차 보상)

  • Kwac Lee-Ku;Kim Hong-Gun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

Droplet Geometry and Its Volume Analysis (기름방울 형상 및 그 체적 분석법)

  • Yoon, Moon-Chul
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.320-325
    • /
    • 2008
  • The recent industrial application requires technical methods to get the cutting fluid droplet surfaces in particular from the viewpoint of topography and micro texture. To characterize the surface topography of droplet, the combination of the confocal laser scanning microscope (CLSM) and wavelet filtering is well suited for obtaining the droplet geometry encountered in tribological research. This technique indicates a better agreement in obtaining an appropriate droplet surface obtained by the CLSM over a detail range of surface accuracy (resolution: $2{\mu}m$). And the results allow an excellent accuracy in a measurement of a droplet surface. The combination of extended focal depth measurement configured and multi-scale wavelet filtering has proven that it can construct a droplet surface in a successive and accurate way. A multi-scale approach of wavelet filtering was developed based on the decomposition and reconstruction of droplet surface by 2D wavelet transform using db9 (a mother wavelet of daubechies). Also this technique can be extended to characterize the quantification of droplet properties and other field in a wide range of scales. Finally this method is verified to be a better droplet surface modeling in a micro scale arising in a mist machining.

Prototyping the Brake Shields of a Vehicle by Dieless CNC Forming Technology (다이레스 CNC 포밍을 이용한 자동차용 브레이크 더스트 쉴드 시작품 제작)

  • Lee H.J.;Kang S.H.;Yeom K.S.;Gang Byeong-Su;Wang D.H.;Kang J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.529-530
    • /
    • 2006
  • Manufacturing industry is changing rapidly. Prototyping with rapid manufacturing is a part of every business in many companies and prototypes are used efficiently as a part of the production development process. Sheet metal forming has traditionally been a technology area where prototyping has been extremely expensive and efficient options for low volume have been limited. This paper describes the process for incremental sheet forming technologies to make the prototype for a brake dust shield of vehicles, which includes the remodeling method to make a base mold and tool path for sheet metal forming and 5-axes laser cutting machine to trim the prototype product.

  • PDF

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF