• 제목/요약/키워드: Laser chemical vapor deposition

검색결과 123건 처리시간 0.033초

In-situ TEM of Carbon Nanotube Field Emitters and Improvement of Electron Emission from Nanotube Films by Laser Treatment

  • Saito, Yahachi;Seko, Kazuyuki;Kinoshita, Jun-ichi;Ishida, Toshiyuki;Yotani, Junko;Kurachi, Hiroyuki;Uemura, Sashiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1081-1086
    • /
    • 2005
  • Dynamic behavior of carbon nanotubes (CNTs) in an electric field is directly observed by in-situ transmission electron microscopy (TEM). The CNT field emitters examined by in-situ TEM are multiwalled, double-walled and single walled CNTs. Threshold fields for electron emission and sustainable emission currents depending on the structure of CNTs are presented, and degradation mechanism of the CNT field emitters is discussed. In addition to the microscopy studies on individual CNTs, our recent development in surface treatment of CNT layers grown by chemical vapor deposition, which brings about high density of emission current and high uniformity, is also presented.

  • PDF

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.20-24
    • /
    • 2014
  • Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • 손영수
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Mesoscopic properties of carbon nanotubes and its applications: The present and future

  • Lee, Young-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.209-209
    • /
    • 2000
  • Carbon nanotubes have been intensively investigated for its fundamental and technical importances. Structural diversities and the related diverse physical properties with large aspect ratios are fascinating, For instance carbon nanotubes are metal and semiconductors depending on its chirality and furthermore the band gap can be tailored by the diamters. Several issues on its fundamental properties have been discussed. We will review some fundamental problems for band structures, molecular quantum wires, homojunctions, single electron tunneling, and quantum conductance. Several issues related to syntheis of carbon nanotubes including arc discharge, chemical vapor deposition, laser ablation will be extentively discussed. We will further review the applicability of carbon nanotubes on resonator, nanobalance, FET-type transistor, field emission displays electrode for secondary battery and hydrogen storage.

  • PDF

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구 (The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature)

  • 심희상;나윤채;조인화;성영은
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

산화아연막이 증착된 탄소 나노튜브의 전계방출 특성 (Field-emission properties of carbon nanotubes coated by zinc oxide films)

  • 김종필;노영록;이상렬;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1270_1271
    • /
    • 2009
  • In this research, gallium-incorporated zinc oxide (ZnO:Ga) thin films have been used as a coating material for enhancing the field-emission property of CNT-emitters. Multi-walled CNTs were directly grown on conical-type ($250{\mu}m$ in diameter) metal-tip substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The pulsed laser deposition (PLD) technique was used to produce 5wt% gallium-doped ZnO (5GZO) films with very low stress. The structural properties of ZnO and 5GZO coated CNTs were characterized by Raman spectroscopy. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were also used to monitor the variation in the morphology and microstructure of CNTs before and after 5GZO-coating. The measurement of the field emission characteristics showed that the emitter that coated the 5GZO (10nm) on CNTs exhibited the best performance: a maximum emission current of $325{\mu}A$, a threshold field of 2.2 V/${\mu}m$.

  • PDF

Superconducting properties of SiC-buffered-MgB2 tapes

  • Putri, W.B.K.;Kang, B.;Duong, P.V.;Kang, W.N.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.1-4
    • /
    • 2015
  • Production of $MgB_2$ film on metallic Hastelloy with SiC as the buffer layer was achieved by means of hybrid physical-chemical vapor deposition technique, whereas SiC buffer layers with varied thickness of 170 and 250 nm were fabricated inside a pulsed laser deposition chamber. Superconducting transition temperature and critical current density were verified by transport and magnetic measurement, respectively. With SiC buffer layer, the reduced delaminated area at the interface of $MgB_2$-Hastelloy and the slightly increased $T_c$ of $MgB_2$ tapes were clearly noticed. It was found that the upper critical field, the irreversibility field and the critical current density were reduced when $MgB_2$ tapes were buffered with SiC buffer layer. Clarifying the mechanism of SiC buffer layer in $MgB_2$ tape in affecting the superconducting properties is considerably important for practical applications.