• Title/Summary/Keyword: Laser assisted milling

Search Result 15, Processing Time 0.023 seconds

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

Analytical Study of the Determination of Distance between the Laser Heat Source and Tool for Laser-Assisted Machining (레이저보조가공에서 열원과 공구 사이의 거리선정을 위한 해석적 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.699-704
    • /
    • 2015
  • Laser-assisted machining has shown its potential to significantly improve product quality and reduce manufacturing costs; additionally, laser-assisted turning (LAT) and laser-assisted milling (LAM) have been studied by numerous researchers. A research study on the determination of the distance between the laser heat source and the tool for laser-assisted machining, however, has not yet been attempted; we conducted such an analysis by using a finite-element method and heat-transfer equation. The results of this analysis can be used as a reference for the determination of the distance between the laser heat source and the tool for laser-assisted machining.

Laser Preheating Method for Three-Dimensional Laser Assisted Milling (3차원 레이저 보조 밀링을 위한 레이저 예열 방법에 관한 연구)

  • Oh, Won-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1031-1037
    • /
    • 2015
  • Laser assisted machining (LAM) is an effective method with which to effectively process difficult-to-cut materials. Simple machining processes, such as turning and linear tool paths, have been studied by many researchers. But, there are few research efforts on LAM workpieces using threedimensional shapes because of difficulties controlling the laser heat on workpieces with inclined angles or curved surfaces. Two methods for machining three-dimensional workpieces are proposed in this paper. The first is that the heat source shape and laser focal length are maintained using an index table. Second, a rotary type laser module is controlled using an algorithm to move the laser heat source in all directions. This algorithm was developed to control the rotary type laser module and the machine tool simultaneously. These methods are verified by a CATIA simulation.

An Analytical Study on the Preheating Effect of Workpiece with Cylindrical Shape for 3-Dimensional Laser-Assisted Milling (3 차원 레이저 보조 밀링을 위한 실린더형 시편의 예열효과에 관한 해석적 연구)

  • Woo, Wan-Sick;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.173-178
    • /
    • 2015
  • Laser-assisted machining (LAM) is an effective machining method for processing difficult-to-cut materials. Prediction and estimation of preheating effect of the LAM is difficult because of moving heat source. So it is necessary to study the preheating effect of the laser heat source irradiated on the curved surfaces of workpieces of various shape. In this paper, thermal analysis of the LAM for 3-dimentional workpiece with cylindrical shape was performed. The results of this analysis can be applied to obtain the optimal preheating method and path for LAM of 3-dimensional workpiece.

Analysis of Moving Heat Source for Laser Assisted Machining of Plate by Feed Rate Control (이송속도 조절에 의한 평판 레이저 보조가공의 이동 열원해석)

  • Kim, Kwang-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1341-1346
    • /
    • 2011
  • Currently, many researches are carried out for laser assisted machining, which is one of the important fields in materials difficult to process. However, a prediction of heat source is difficult because of moving heat source. In this paper, a thermal analysis of laser assisted machining of plate by change of heat source size is performed, and preheating temperature by adjusting the feed rate is controlled. It was recognized that the maximum preheating temperature increases according to the decrease in heat source size, and feed rate need to adjust as high speed. The results of this analysis can be used as a reference for preheating temperature prediction in laser assisted milling.

Analysis of Overlapping Heat Zones in Laser-Assisted Machining (레이저보조가공에서 중첩열원에 관한 해석 연구)

  • Baek, Jong-Tae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1023-1029
    • /
    • 2015
  • Laser-assisted machining (LAM) is one of the most effective methods for enhancing the machinability of difficult-to-cut materials, such as titanium alloys and various ceramics, and has been studied by many researchers. LAM is a method that facilitates machining by softening a workpiece using a laser heat source. The advantages of the LAM process are decreases in tool wear, cutting force, and surface roughness. However, when the material is over-heated, melting or burning can occur. This study analyzed the heat source distribution with regard to overlapping of preheating on the laser heating path with an acute angle, a right angle and obtuse angles. Then, a power reduction method was proposed to reduce the melting and burning of the workpiece.

A Study on the Analysis of Optimal Working Condition for Constant Temperature Laser MCT(LAM) Combined Machining (항온 Laser MCT(LAM) 복합 가공의 최적 가공 조건 해석)

  • Jeong-Ho Park;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1197-1204
    • /
    • 2023
  • Ti-alloy, a high-strength alloy material among the materials used in aircraft that are trending toward lighter weight, is classified as a difficult-to-cut material that requires a lot of energy for cutting. Cutting in a high-temperature environment is considered one means of making this possible, and various studies have been conducted on it. In particular, research on LAM (Laser Assisted Machining (LAM)), which utilizes laser heating of the cutting area, is being actively conducted. Before processing of the milling cutter begins, the temperature is raised locally by the laser irradiated through the laser head carrier, and the resistance during milling is reduced. Therefore, in this paper, in order to derive such conditions, we performed heat transfer analysis according to transfer conditions and compared it with actually applied test data to use it to establish appropriate processing conditions.