• 제목/요약/키워드: Laser applications

검색결과 821건 처리시간 0.024초

레이저를 이용한 후두 수술의 합병증 (Complications of Laser Surgery of Larynx)

  • 박병건;이상준;정필상
    • 대한후두음성언어의학회지
    • /
    • 제22권1호
    • /
    • pp.30-33
    • /
    • 2011
  • Laser is a relatively recent addition to laryngeal surgery. Since their invention, laser use and applications have expanded rapidly. The use of lasers in surgery has offered a time- and cost-efficient alternative to cold surgical techniques and has been used in the treatment of numerous laryngeal pathologies, including stenoses, recurrent respiratory papillomatosis, leukoplakia, nodules, malignant laryngeal disease, and polypoid degeneration (Reinke's edema). Despite the notable benefits, laser surgery is not without disadvantages. Laser heat can increase scarring and cause damage to adjacent tissue. With laser laryngeal microsurgery, there is potential for airway fire, endolaryngeal bleeding, perichondritis, chondritis, granuloma, surgical emphysema, laryngeal stenosis and web formation, postoperative edema and swallowing problem. Surgeons should be known about these complications and could manage properly.

  • PDF

수술용 2파장 펄스형 Nd:YAG 레이저 개발 (Development of Surgical Two-wavelegth Nd:YAG Laser)

  • 윤길원;김홍식
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권4호
    • /
    • pp.491-498
    • /
    • 1996
  • The development of a compact two-wavelength Nd:YAG laser for dental and ENT applications is presented. The Nd:YAG resonator generates either 1.06$\mu$m or 1.32$\mu$m. The wavelength selection is made at the control panel. The Nd:YAG laser parameters at 1.06$\mu$m are ; the maximum pulse duration of 150$\mu$s, repetition rates of I-100Hz, and the maximum average power of 25W. At 1.32$\mu$m, the pulse duration is the same where the repetition rates and the maximum average power are I-30Hz and lOW respectively. High voltage power supply consists of a simmer module and two identical high voltage DC converters. In order to make a complete medical laser system, an optical fiber delivery unit, foot pedal and water spray handpiece are also developed. The wavelength selection is reliable since no movement of optical or mechanical components is required. The high voltage power supply is compact, easy to be maintained and applicable for other laser systems due to its modular design.

  • PDF

레이저빔 마킹 조건에 따른 티타늄 표면특성 분석 (Analysis of Titanium Surface Characteristics according to Laser Beam Marking Conditions)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.39-43
    • /
    • 2013
  • Titanium has been used to satisfy various applications such as bio engineering, aerospace, electronics, automobile. Recently, micro fabrication technologies of metals such as titanium have been required to satisfy many conditions in various fields. To satisfy these demands, micro electrochemical process using laser marking can be an alternative method because it is one of the precision machining and efficient process. Micro electrochemical process using laser marking needs to accomplish form of the oxidized recast layer on metal surface by laser marking. The laser beam marking conditions such as average power, pulse repetition rate and marking speed should be properly selected to form oxidized recast layer. So, the characteristics of titanium surface according to laser marking conditions was investigated through SEM(scanning electron microscope), EDS(energy dispersive spectrometer) and surface roughness analysis.

  • PDF

Photoresponsive Hydrogels as Drug Delivery Systems

  • Abueva, Celine DG.;Chung, Phil-Sang;Ryu, Hyun-Seok;Park, So-Young;Woo, Seung Hoon
    • Medical Lasers
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2020
  • Hydrogels have been developed and used in tissue engineering and regenerative medicine to deliver therapeutics to injured or diseased tissue because of their versatility and properties that can be tailored to match the natural extracellular matrix. Hydrogels can be made with a variety of physical and chemical properties combined with light responsiveness ideal for applications in different fields of medicine that require the spatiotemporal control of therapeutics. Light, as a stimulus, is relatively inexpensive, contact-free, noninvasive with high spatial resolution and temporal control, convenient and easy to use, and allows deep tissue penetration that is relatively harmless. Photoresponsive hydrogels are ideal candidates for on-demand drug delivery systems that are capable of sustained and controlled drug release, minimizing the side effects, and ensuring the activity and efficient delivery of drugs to the target tissue.

Synchronization of a Silica Microcomb to a Mode-locked Laser with a Fractional Optoelectronic Phase-locked Loop

  • Hui Yang;Changmin Ahn;Igju Jeon;Daewon Suk;Hansuek Lee;Jungwon Kim
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.557-561
    • /
    • 2023
  • Ultralow-noise soliton pulse generation over a wider Fourier frequency range is highly desirable for many high-precision applications. Here, we realize a low-phase-noise soliton pulse generation by transferring the low phase noise of a mode-locked laser to a silica microcomb. A 21.956-GHz and a 9.9167-GHz Kerr soliton combs are synchronized to a 2-GHz and a 2.5-GHz mode-locked laser through a fractional optoelectronic phase-locked loop, respectively. The phase noise of the microcomb was suppressed by up to ~40 dB at 1-Hz Fourier frequency. This result provides a simple method for low-phase-noise soliton pulse generation, thereby facilitating extensive applications.

파장가변 광원 개발 동향 및 응용 (Trends in Wavelength-Tunable Laser Development and Applications)

  • 권오기;김기수;권용환
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.48-61
    • /
    • 2024
  • The integration of high-capacity terrestrial networks with non-terrestrial communication using satellites has become essential to support seamless low-latency services based on artificial intelligence and big data. Tunable light sources have been instrumental in resolving the complexity of channel management in wavelength division multiplexing (WDM) systems, contributing to increased network flexibility and serving as optical sources for long-distance coherent systems. Recently, these light sources have been applied to beam-steering devices in laser communication and sensing applications across ground, aerial, and satellite transport. We examine the utilization and requirements of tunable lasers in WDM networks and describe the relevant development status. In addition, performance requirements and development directions for tunable lasers used in optical interference systems and beam-steering devices are reviewed.

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.

레이저 피닝 처리 및 적용 기술 (Laser Peening Process and Its Application Technique)

  • 김종도;무네하루 쿠쯔나;유지 사노
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.1-6
    • /
    • 2015
  • Advances in laser technology have yielded a multitude of innovative processes and applications in various industries. Laser peening is a typical example invented in the mid-1990s as a surface technology, which converted residual stress from tension to compression by just irradiating successive laser pulses to metallic materials under aqueous environment without any surface preparation. The effects of laser peening have been experimentally studied on residual stress, stress corrosion cracking(SCC) susceptibility and fatigue properties with water-penetrable frequency-doubled Nd:YAG laser. In addition, laser peening has been widely used in aviation and aerospace industries, automobile manufacturing and nuclear plant. One of the most important causes to improve the above-mentioned properties is the deeper compressive residual stress induced by laser peening. Taking advantage of the process without reacting force against laser irradiation, a remote operating system was developed to apply laser peening to nuclear power reactors as a preventive maintenance measure against SCC.

515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석 (Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser)

  • 신동식;조용권;손현기;서정
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권3호
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].