• Title/Summary/Keyword: Laser Vibration Measurement

Search Result 130, Processing Time 0.025 seconds

Measurement of Loss Factor and Young's Modulus of ABS and PP Specimens by Using a Speaker (스피커를 이용한 ABS와 PP의 손실계수 및 영률 측정)

  • Jeon, Byeong Su;Jung, Sung Soo;Lee, Jong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.724-730
    • /
    • 2014
  • It is essential to control noise and vibration in various industrial fields. In the automobile industry, various plastics have been developed and replaced metallic materials in order to reduce mass and vibration effectively. In this study, we measured and analyzed the Young's moduli and the loss factors of Acrylonitrile butadiene styrene(ABS) and Polypropylene(PP). In order to solve the fundamental error to determine the two quantities, a loudspeaker was used instead of conventional electromagnetic devices to generate bending motion to the specimens and a laser vibrometer was also used in detection of vibration signal of the specimen. The measured Young's moduli and loss factors of the ABS specimen were nearly constant as the temperature($-10{\sim}60^{\circ}C$) was increased. The loss factor of PP specimen showed peak value at $20^{\circ}C$ and it means that there is glass transition for the PP specimen. Young's modulus of PP specimen was linearly decreased as the temperature was increased.

Measurement of Vibration Mode Shape By Using Hilbert Transform (Hilbert Transform을 이용한 진동모드 측정)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.392-397
    • /
    • 2001
  • This paper concerns on modal analysis of mechanical structures by using a continuous scanning laser Doppler vibrometer. In modal analysis the Hilbert transform based approach is superior to the Fourier transform based approach because of its fine accuracy and its flexible experimental settings. In this paper the Hilbert transform based approach is extended to measure area mode shape data of a structure by simply modifying the scanning pattern ranging the entire surface of the structure. The effectiveness of this proposed method is illustrated along with results of numerical simulation for a rectangular plate.

  • PDF

The Experiment of Flow Induced Vibration in PWR RCCAs

  • Kim, Sang-Nyung;Cheol Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.291-299
    • /
    • 2001
  • Recently, severe wear on the shutdown rod cladding of Ulchin Nuclear Power Plant #1, #2 were observed by the Eddy Current Test(E.C.T.). In particular, the wear at the sixth card location was up to 75%. The test results indicated that the Flow Induced Vibration(F.I.V.) might be the cause of the fretting wear resulting from the contact between Rod Cluster Control Assemblies(RCCAs) and their spacing cards(guide plates) arranged in the guide tube. From reviewing RCCAs fretting wear repots and analyzing the general characteristics of F.I.V. mechanism in the reactor, geometric layout and flow conditions around the control rod, it is concluded that the turbulence excitation is the most probable vibration mechanism of RCCA. To identify the governing mechanism of RCCA vibration, an experiment was performed for a representative rod position in which the most serious fretting wear experienced among the six rod positions. The experimental rig was designed and set up to satisfy the governing nondimensional numbers which are Reynolds number and mass damping parameter. The vibration amplitude measurement by the non-contact laser displacement sensor showed good agreements in the frequency and the maximum wearing(vibration) location with Ulchin E.C.T. results and Framatome report, respectively. The sudden increase in the vibration amplitude was sensed around the 6th guide plate with mass flow rate variation. Comparing the similitude rod behaviour with the idealized response of a cylinder in flow induced vibration, it was found that he dominant mechanism of vibration was transferred from turbulence excitation to periodic shedding at the mass flow ate 90ι/min. Also the critical velocity of the vibration in RCCAs was determined and the vibration can be prevented by reducing the bypass flow rate below the critical velocity.

  • PDF

A Study on Experimental Prediction of Landslide in Korea Granite Weathered Soil using Scaled-down Model Test (축소모형 실험을 통한 국내 화강암 풍화토의 산사태 예측 실험 연구)

  • Son, In-Hwan;Oh, Yong-Thak;Lee, Su-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.439-447
    • /
    • 2019
  • In this study, experiments were conducted to establish appropriate measures for slopes with high risk of collapse and to obtain results for minimizing slope collapse damage by detecting the micro-displacement of soil in advance by installing a laser sensor and a vibration sensor in the landslide reduction model experiment. Also, the behavior characteristics of the soil layer due to rainfall and moisture ratio changes such as pore water pressure and moisture were analyzed through a landslide reduction model experiment. The artificial slope was created using granite weathering soil, and the resulting water ratio(water pressure, water) changes were measured at different rainfall conditions of 200mm/hr and 400mm/hr. Laser sensors and vibration sensors were applied to analyze the surface displacement, and the displacement time were compared with each other by video analysis. Experiments have shown that higher rainfall intensity takes shorter time to reach the limit, and increase in the pore water pressure takes shorter time as well. Although the landslide model test does not fully reflect the site conditions, measurements of the time of detection of displacement generation using vibration sensors show that the timing of collapse is faster than the method using laser sensors. If ground displacement measurements using sensors are continuously carried out in preparation for landslides, it is considered highly likely to be utilized as basic data for predicting slope collapse, reducing damage, and activating the measurement industry.

The Flow Analysis for Vibration and Noise Diagnostic of Vacuum Cleaner Fan Motor (진공청소기 팬 모터의 진동 및 소음원인 분석을 위한 유동해석)

  • 김재열;곽이구;안재신;양동조;송경석;박기형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

Optical Detection of Red Blood Cell Aggregation in a Disposable Microfluidic Channel

  • Shin Sehyun;Jang Ju-Hee;Park Myung-Soo;Ku Yunhee;Suh Jang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.887-893
    • /
    • 2005
  • The aggregability of red blood cells (RBCs) was determined by laser backscattering light analysis in a microfluidic channel. Available techniques for RBC aggregation often adopt a rotational Couette-flow using a bob-and-cup system for disaggregating RBCs, which causes the system to be complex and expensive. A disposable microfluidic channel and vibration generating mechanism were used in the proposed new detection system for RBC aggregation. Prior to measurement, RBC aggregates in a blood sample were completely disaggregated by the application of vibration-induced shear. With the present apparatus, the aggregation indexes of RBCs can be measured easily with small quantities of a blood sample. The measurements with the present aggregometer were compared with those of LORCA and the results showed a strong correlation between them. The aggregability of the defibrinogenated blood RBCs is markedly lower than that of the normal RBCs. The noble feature of this design is the vibration-induced disaggregation mechanism, which can incorporate the disposable element that holds the blood sample.

An Experimental Study for the Development of Epoxy Adhesives for Optical Top (광학정반용 에폭시 접착제 개발을 위한 실험적 연구)

  • Gil, Hyeong-Gyeun;Youn, Seok-Weon;Kim, Kwang-San
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.727-733
    • /
    • 2010
  • Optical tables provide a platform for the establishment and test of measurement systems which use Laser. Therefore, not only static characteristics such as surface flatness, static stiffness and etc. but dynamic response characteristics is very important design parameter. The dynamic stiffness is generally estimated through the modal test, and compliance is used as a representative performance standard. Recently there is an example of defining the dynamic deflection coefficient and using it as a new performance standard of the dynamic stiffness, but it is not generalized yet in industry. In this study, we verify the validity of existing DDC calculus by making an experiment on granite. And for improvement in damping performance of optical tables, we are going to evaluate the effect of fillers on the compliance, then develop an epoxy adhesive based on the result of this experiment.

A Method of Automatic Plumbness Measuring for the Semi-umbrella Type Hydraulic Turbine Generator (준우산형 수차발전기의 수직도 자동 측정방법과 그 적용)

  • 김문영;김낙점
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.623-628
    • /
    • 2000
  • This paper presents the automatic plumbness measuring system form improving the accuracy and working time for plumbness measuring of semi-umbrella type hydraulic turbine generator. It is general practice that rotating shaft should run within acceptable vibration limit. In order to obtain more accurate measuring data for single stage shaft on the semi-umbrella type, plumbness approach must be established carefully and accurately. Generally, present plumbness procedure is required several calculation algorithm, laser sensor and data acquisition devices. As a result of application to actual new system it is confirmed that working time could be saved over 80% and accurate measurement data could be acquired.

  • PDF

A Study on Computer Simulation of Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구)

  • Lee, Ki-Joo;Park, Joong-Kyung;Lim, Si-Hyung;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.