• Title/Summary/Keyword: Laser Scanner

Search Result 542, Processing Time 0.03 seconds

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Study on Robot based Remote Laser Welding (로봇 기반 원격 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Cho, Taik-Dong
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • Remote Laser welding technology for manufacturing automotive body is studied. Laser welding and industrial robot systems are used for the robot based laser welding system. The laser system is used 1.6kW Fiber laser(YLR-1600) of IPG. The robot system is used HX130-02 of Hyundai Heavy Industry(payload : 130kg). The robot based laser welding system is equipped with laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc are butt and lapped joints. The quality test of the laser welding are through the observation the shape of bead on plate and cross-section of welding part. During past three years the laser system, 4kW Nd:YAG laser (HL4006D) of Trumpf was used and the robot system, IRB6400R of ABB (payload:120kg) was used. The new laser source, robot and laser scanner system are used to increase the processing speed and to improve the process efficiency. This paper introduces the robot based remote laser welding system to resolve the limited welding speed and accuracy of the conventional laser welding system.

  • PDF

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

Point Data Reduction in Reverse Engineering by Delaunay Triangulation (역공학에서의 Delaunay 삼각형 분할에 의한 점 데이터 감소)

  • Lee, Seok-Hui;Heo, Seong-Min;Kim, Ho-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1246-1252
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models for the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model and the generation of manufacturing data like STL file. A laser scanner has a great potential to get geometrical data of a model for its fast measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points. A new approach to remove point data with Delaunay triangulation is introduced to deal with problems during reverse engineering process. This approach can be used to reduce a number of measuring data from laser scanner within tolerance, thus it can avoid the time for handling point data during modelling process and the time for verifying and slicing STL model during RP process.

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

Study on the Reconstruction of Skull Prototype using CT image and Laser Scanner

  • Hur, Sung-Min;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.146-151
    • /
    • 2000
  • The importance of shape reconstruction is increasing in many areas such as RPD(Rapid Product Development) and reverse engineering. Typical data in these areas are mainly classified as the shape data measured by a laser scanner and the data extracted from the CT image. The goal of this research is to realize three-dimensional shape construction by showing a possible way to analyze input image data and reconstruct the original shape. Two main steps of the reconstructing process are obtaining cross-section data from image processing and linking loops between one slice and the next. Objects reconstructed in this way are compared with other objects using a laser scanner and modelled by commercially available software. The technique is expected to be used in reverse engineering applications and the object modeling with automated process.

  • PDF

Improvement of Precision for Measuring Individual Trees using Aerial LiDAR and Terrestrial Laser Scanner (항공 LiDAR와 지상 Laser Scanner를 이용한 개체목 측정의 정확도 향상)

  • Jung, Seung-Eun;Lee, Woo-Kyun;Kawk, Doo-Ahn;Choi, Sung-Ho;Kwak, Han-Bin;Kim, So-Ra
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.246-248
    • /
    • 2009
  • 기존의 항공사진 및 위성사진을 활용한 원격탐사방법은 기상조건에 따른 제약과 3차원적 수직구조 관한 정보 수집에 한계가 있다. 따라서 보다 정확하고 신속한 산림자원 정보를 획득하기 위해서는 새로운 기술적 접근이 필요하다. 3차원 측정이 가능한 LiDAR의 특성을 이용하면 기존 방법의 부정확성과 비효율성을 상당부분 극복 할 수 있다. 본 연구에서는 지상 Laser Scanner 와 항공 LiDAR를 이용하여 개체목의 3차원 구조를 예측하여 수고, 지하고, 수관면적, 수관체적을 추정하고 결과를 비교하였다. 지상 Laser Scanner에 의한 측정치를 참조자료로 하여 항공 LiDAR의 개체목 측정 정확성을 향상 시킬 수 있는 보정식을 최종적으로 개발하였다.

  • PDF

Autonomous Navigation System of Mobile Robot Using Laser Scanner for Corridor Environment (레이저 스캐너를 사용한 이동로봇의 복도 자율 주행 시스템)

  • Park, Jong-Kwan;Park, Tae-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1044-1049
    • /
    • 2015
  • This paper proposes an autonomous navigation system of mobile robots for indoor corridor environment. The system uses a laser scanner but does not use reflectors. The laser scanner measures the distance between robot and structures such as wall, pillar, and fixtures. Adaptive breakpoint detector and modified IEPF (iterative endpoint fit) are developed to find mark points from the distance data. The robot path for corridor is then generated using the angle histogram of the mark points. The experimental results are finally presented to show the effectiveness of the proposed method.

Oil-impregnated Sintered-metal Bearing and Herringbone-grooved Fluid Bearing for High-speed Scanner Motors (함유소결베어링과 빗살무늬 유체베어링의 마찰 특성 및 레이저 스캐너 모터에서의 전기적 특성)

  • 이영제;정광섭;정성훈
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.108-115
    • /
    • 1999
  • The electrical and frictional properties of oil-impregnated sintered-metal bearing (OSB) and herringbone-grooved fluid bearing (HFB) with varying loads and speeds were measured. OSB shows very good performance up to 20,000 rpm and 0.05 N, and HFB successfully works up to 35,000 rpm and 0.05 N. From the endurance tests on start-stop and continuous operation, it was confirmed that those bearings could be mass-produced fur use on scanner motor in a laser scanner unit.