• Title/Summary/Keyword: Laser Repair

Search Result 87, Processing Time 0.053 seconds

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

An Analysis of the Correlation between He-Ne Laser Therapy in Literature and Clinical Application (He-Ne 레이저에 대한 문헌과 이를 근거로 한 임상 활용 예의 비교 고찰)

  • Youn, In-Hwan;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.192-201
    • /
    • 2006
  • Objectives : Recently, He-Ne laser has been used for clinical purpose. We study the medical basis of He-Ne laser therapy and We make a proposal concerning the clinical application of using He-Ne laser in Medicine. Methods : We have selected data related to He-Ne laser therapy and study how to use He-Ne laser in clinic. Results : In biology, He-Ne laser therapy has been effects of an improve in skin regeneration an improve in peripheral and central nerve regeneration an improve in muscle regeneration, an anti-inflammation an alleviation of pain and a bone repair. In oriental medicine, He-Ne laser has been used to laser acupuncture and laser oriental physical treatment. In clinic, He-Ne laser have been used to care several parts like as facial palsy, facial spasm, trigeminal neuropathy, rhinitis and tinnitus. Recently, there is argument that He-Ne laser therapy is suitable to medical insurance. Conclusions : Laser therapy in oriental medicine is widespread and We can apply He-Ne laser to facial palsy, facial spasm, trigeminal neuropathy, rhinitis, tinnitus by using laser acupuncture or laser oriental physical treatment. Till now the whole mechanisms are not fully understood, so we hope to study these mechanisms actively and make suitable to medical insurance device in the near future.

  • PDF

DMLS (Direct Metal Laser Sintering) denture repair technique for a removable partial denture: A case report (DMLS (Direct Metal Laser Sintering) 기술을 이용한 가철성 국소의치 수리 증례)

  • Jang, Eun-Sun;Jang, Geun-Won;Byun, Jae-Joon;Kong, Dae-Ryong;Song, Joo-Hun;Lee, Gyeong-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.251-256
    • /
    • 2020
  • In recent years, digital technology has been developed in dentistry, which denture frameworks can be manufactured using DMLS (Direct Metal Laser Sintering) technique. A traditional impression method can be replaced by oral scanning and wax pattern production process can be achieved by the use of CAD/CAM techniques. The designed STL files can be sent to DMLS devices to fabricate final components of removable partial dentures (RPD). The advantages of digital dentistry are concision and precision. In this case study, a fracture of occlusal rests providing support and indirect retention was repaired by DMLS and laser welding techniques. It shows satisfactory results in adaptation accuracy and functional properties of the repaired denture.

Histological Change and Collagen Formation on Laser Wounded Rat using 808 nm Diode Laser and $CO_2$ Laser

  • Chung, Phil-Sang;Shin, Jang-In;Chang, So-Young;Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • Lasers are necessity in our life related to the fields of medicine and cosmetic surgery. With 808 nm diode laser and $CO_2$ laser, we made some wounds on a dorsum of rat by laser irradiation. All of irradiations shows thermal effects on the whole region of skin tissues. They make wound damage depending on laser power and irradiation time. Because a collagen is plays an important role in tissue repair, we studied collagen accumulation in wound tissue. For wound healing, collagen accumulation was found in the near region of damage in epidermis and dermis layer of the rat skin. In case of the quantitative analysis of collagen in wound tissue, the amount of collagen in wound tissue by $CO_2$ laser irradiation is higher than that of 808 nm diode laser irradiation. And re-epithelialization was significantly faster in wound by $CO_2$ laser irradiation compared with that of 808 nm diode laser irradiation.

  • PDF

Study on Manufacturing Process of Self-Healing Microcapsules for Damage Repair in Polymeric Composites (폴리머 복합재의 손상보수를 위한 자가치료용 마이크로캡슐 제조공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.793-796
    • /
    • 2003
  • This study dealt with the manufacturing process of self-healing microcapsules for damage repair in polymeric composites. The microcapsule was consisted with a DCPD (dicyclopentadiene) as the healing agent and a urea-formaldehyde resin as the wall section. The size distribution of microcapsules were measured by a particle size analyzer using a laser diffraction technique. Thermal stability of microcapsules was investigated by using a TGA under continuous and isothermal heating conditions. According to the results, these microcapsules were verified to be to thermally stable and have a great potential to be applicable for damage repair in polymeric composites.

  • PDF

The effect of infrared rays diode irradiation on collagen formation (적외선 레이저 다이오드가 콜라겐 형성에 미치는 영향)

  • Kim, Tae-Gon;Kim, Toung-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.411-411
    • /
    • 2009
  • Low level laser therapy has various therapy effects. This paper performed the basic study for developing the Low Level Laser Therapy Equipment for medical treatment. The apparatus has been fabricated using the laser diode and microprocessor unit. This equipment was fabricated using a micro-controller and a laser diode, and designed to enable us to control light irradiation time, frequency and so on. In this study, the designed device was used to find out how infrared laser diode affected the collagen formation. For in-vivo test, a round wound 1cm in diameter was cut from the test animal whose epidermal and dermal layers were removed. Test animals were relieved for 24 hours after wounds had been excised and then the infrared laser irradiation group was given irradiation therapy over 9 days one 20 min per day. As a result, More collagenosis occurred in the order of infrared laser irradiation and non-irradiation group. Collagenosis is closely related to wound repair and it was found that infrared laser irradiation groups had more collagenosis and was quicker to recover from wound than non-irradiation group.

  • PDF

Etching of Silicon Wafer Using Focused Argon lon Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각)

  • Cheong, Jae-Hoon;Lee, Cheon;Park, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF

The Study on Wound Healing in Rabbit Skins by Low-intensity Laser Irradiation (저강도 레이저 조사에 의한 가토 피부의 상처 치유에 관한 연구)

  • 김식현;전진석
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2000
  • The skin is an organ that has many important roles, including protection against infection, regulation of temperature and fluid loss, and sensory function. Injury to the skin, wound repair normally involves: (1) balanced activity of inflammation, (2) the re-epithelial phase and (3) the matrix formation of remodeling phase. Thus, skin wound healing is a finely controlled biological process involving a series of complex cellular interactions. Laser therapy is being implemented with increasing frequency in medicine. Low intensity laser is one that is capable of producing an energy density so low that any biologic alterations are the result of direct irradiation effect, not thermal events. This study was designed to evaluate the efficacy of low intensity laser therapy on skin wound healing in rabbits. A total of 10 male rabbits (New Zealand White Rabbit), age 8 weeks were used. Skin wound were surgically created dorso-lateral on the flank of 10 rabbits (2$\times$2 cm/damage areas). The experimental animals were treated with 5Hz (830 nm wave length) low-intensity laser (MILTA-01 Model) daily for 10 min (1.6 J/$cm^2$) for 12 days. Control animals were sham treated with the laser head. Laser irradiation animals showed a complete remodeling of the epithelial layer, a positive repair of connective tissues, and enhanced the wound closure rate over time as compared to the control animals. Especially, laser irradiation groups improved fibroblast activity, cellular content, granulation tissue formation, and collagen deposition which is resulted in improving the tensile strength of the wound. These findings suggest that laser photostimulation could accelerate healing of open wound in rabbits, and may be benefit in the treatment of open wound, including decubitis ulcers.

  • PDF