• Title/Summary/Keyword: Laser Repair

Search Result 87, Processing Time 0.02 seconds

Welding Characteristics of Inconel Plate Using Pulsed Nd : YAG Laser Beam (펄스형 Nd:YAG 레이저빔을 이용한 인코넬 판재의 용접 특성)

  • 변진귀;박광수;한원진;심상한
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • The nuclear steam generators are subjected to corrosion environmental condition during operation that can result in stress corrosion in the tube wall. If any tube wall degradation is recognized, the tube must be repaired by plugging or sleeving. For the sleeving repair, Nd : YAG laser welded sleeving technology is one of the most promising when considering radioactive working conditions in the nuclear power plant. In this paper, the laser welding characteristics of steam generator tube and sleeve materials are investigated. The effects of average laser power, laser energy, welding speed, pulse duration and frequency are evaluated. Based on these results, Nd : YAG laser welded sleeving repair was applied to the degraded steam generator tubes in real environment.

  • PDF

Antifuse Circuits and Their Applicatoins to Post-Package of DRAMs

  • Wee, Jae-Kyung;Kook, Jeong-Hoon;Kim, Se-Jun;Hong, Sang-Hoon;Ahn, Jin-Hong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.216-231
    • /
    • 2001
  • Several methods for improving device yields and characteristics have been studied by IC manufacturers, as the options for programming components become diversified through the introduction of novel processes. Especially, the sequential repair steps on wafer level and package level are essentially required in DRAMs to improve the yield. Several repair methods for DRAMs are reviewed in this paper. They include the optical methods (laser-fuse, laser-antifuse) and the electrical methods (electrical-fuse, ONO-antifuse). Theses methods can also be categorized into the wafer-level(on wafer) and the package-level(post-package) repair methods. Although the wafer-level laser-fuse repair method is the most widely used up to now, the package-level antifuse repair method is becoming an essential auxiliary technique for its advantage in terms of cost and design efficiency. The advantages of the package-level antifuse method are discussed in this paper with the measured data of manufactured devices. With devices based on several processes, it was verified that the antifuse repair method can improve the net yield by more than 2%~3%. Finally, as an illustration of the usefulness of the package-level antifuse repair method, the repair method was applied to the replica delay circuit of DLL to get the decrease of clock skew from 55ps to 9ps.

  • PDF

Welding of Inconel Tube with Pulsed Nd:YAG Laser (펄스형 Nd:YAG 레이저 빔에 의한 Inconel Tube의 용접)

  • Kim, J.D.;Chang, W.;Chung, J.M.;Kim, C.J.
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.82-87
    • /
    • 1999
  • The basic remote sleeve repair-welding technology by the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in a nuclear power plant has been developed. The relationship between the connection width and welding parameters have been investigated for the fundamental research to apply the sleeve-repair-welding technique to the nuclear industry. The Inconel 600 tube and Inconel 690 sleeve used for high temperature and high pressure service were welded as round lap welding by Nd:YAG laser. It was observed that the tensile shear strength, 340MPa of the welded specimen is equivalent to about 60% of that of the base metal (Inconel 600), 550MPa. The difference between the hardness of the base metal and that of the laser welds was about 10%. Ductile fracture was partly occurred in the weld but the cracking has not been observed. In spite of absence of the crack, the strength of welds was not sufficient in terms of the tensile shear strength.

  • PDF

An Electrical Repair Circuit for Yield Increment of High Density Memory (고집적 메모리의 yield 개선을 위한 전기적 구제회로)

  • 김필중;김종빈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2000
  • Electrical repair method which has replaced laser repair method can replace defective cell by redundancy’s in the redundancy scheme of conventional high density memory. This electrical repair circuit consists of the antifuse program/read/latch circuits, a clock generator a negative voltage generator a power-up pulse circuit a special address mux and etc. The measured program voltage of made antifuses was 7.2~7.5V and the resistance of programmed antifuses was below 500 Ω. The period of clock generator was about 30 ns. The output voltage of a negative voltage generator was about 4.3 V and the current capacity was maximum 825 $mutextrm{A}$. An antifuse was programmed using by the electric potential difference between supply-voltage (3.3 V) and output voltage generator. The output pulse width of a power-up pulse circuit was 30 ns ~ 1$mutextrm{s}$ with the variation of power-up time. The programmed antifuse resistance required below 44 ㏀ from the simulation of antifuse program/read/latch circuit. Therefore the electrical repair circuit behaved safely and the yield of high densitymemory will be increased by using the circuit.

  • PDF

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.

A Study of Laser Repair for Thin Film Pattern (박막 패턴의 레이저 리페어 연구)

  • 강형식;홍성준;최종윤;홍순국;전태옥
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 1998
  • Laser ablation system for microscopic defect in thin film pattern was developed in this study. For the varification of this study, several laser ablation tests were accomplished. The ablated shape of thin film and the surface of base glass were analyzed by use of microscopic tools and EPMA. After some tests of thin film, the specification of laser and optical unit(max. laser energy is 25mJ, wavelength is 532nm, Q-switched Nd-YAG laser, frequency is 20Hz, Auto-focus unit is LD type.)

  • PDF

The Efficacy and Safety of Ablative Fractional Resurfacing Using a 2,940-Nm Er:YAG Laser for Traumatic Scars in the Early Posttraumatic Period

  • Kim, Sun-Goo;Kim, Eun-Yeon;Kim, Yu-Jin;Lee, Se-Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.3
    • /
    • pp.232-237
    • /
    • 2012
  • Background : Skin injuries, such as lacerations due to trauma, are relatively common, and patients are very concerned about the resulting scars. Recently, the use of ablative and non-ablative lasers based on the fractional approach has been used to treat scars. In this study, the authors demonstrated the efficacy and safety of ablative fractional resurfacing (AFR) for traumatic scars using a 2,940-nm erbium: yttrium-aluminum-garnet (Er:YAG) laser for traumatic scars after primary repair during the early posttraumatic period. Methods : Twelve patients with fifteen scars were enrolled. All had a history of facial laceration and primary repair by suturing on the day of trauma. Laser therapy was initiated at least 4 weeks after the primary repair. Each patient was treated four times at 1-month intervals with a fractional ablative 2,940-nm Er:YAG laser using the same parameters. Posttreatment evaluations were performed 1 month after the fourth treatment session. Results : All 12 patients completed the study. After ablative fractional laser treatment, all treated portions of the scars showed improvements, as demonstrated by the Vancouver Scar Scale and the overall cosmetic scale as evaluated by 10 independent physicians, 10 independent non-physicians, and the patients themselves. Conclusions : This study shows that ablative fractional Er:YAG laser treatment of scars reduces scars fairly according to both objective results and patient satisfaction rates. The authors suggest that early scar treatment using AFR can be one adjuvant scar management method for improving the quality of life of patients with traumatic scars.