• Title/Summary/Keyword: Laser Propulsion

Search Result 97, Processing Time 0.024 seconds

The Study of Spray Characteristics for the High Speed Rotating Fuel Injection System (고속회전 연료분무장치의 분무특성연구)

  • Choi, Hyung-Kyung;Choi, Chea-Hong;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.53-57
    • /
    • 2007
  • 고속회전의 원심력으로 연료를 공급하고 액체연료의 미립화를 초래하는 회전연료분무장치에 대한 분무특성 시험연구를 수행하였다. 특정한 공간상에 존재하는 액적의 특성을 이해하고자 고속회전 연료분사시스템을 설계 제작하였다. 시험장치는 고속으로 회전하는 Spindle, 회전연료노즐, 가압식 물탱크, 아크릴 케이스로 구성하였다. 액적의 크기와 속도를 측정하기 위해 PDPA(Phase Doppler Particle Analyzer)시스템을 사용하였고, ND-Yag Laser를 사용하여 분무를 가시화 하였다. 시험결과 고속회전 연료분사시스템의 분무특성을 확인할 수 있었고, 회전속도는 액적 크기, 속도, 분무각 및 분무패턴 등의 분무특성에 주요한 영향을 미치는 것으로 확인되었다.

  • PDF

LASER-INDUCED IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE

  • Jae-Ou Chae;Gregory N. Mokhin;Nam-Ki Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.157-168
    • /
    • 1995
  • Ignition of a reactive solid with rough surface by constant heat flux is studied. The geometry of surface is represented by a protrusion in shape of cone of infinite length. Ignition time and ignition criterion versus apex angle are determined, with the use of heterogeneous model of ignition. To study the effect of geometry on ignition the results are compared with the known results for the one-dimensional ignition of the semi-infinite body. It is shown, that: a) ignition time depends strongly upon the apex angle and is proportional to the angle to the second power; b) ignition criterion and ignition temperature do not depend strongly on angle. The ignition delay and the energy required for the successful ignition are substantially reduced compared to the one-dimensional case.

  • PDF

Supersonic Combustion Studies for SCRamjet Engines

  • Driscoll, James F.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.1-14
    • /
    • 2004
  • Experiments were performed in order to examine the stability of hydrocarbon-fueled flames in cavity flameholders in supersonic airflows. Methane and ethylene were burned in two different cavity configurations having aft walls ramped at 22.5 and 90$^{\circ}$. Air stagnation temperatures were 590 K at Mach 2 and 640 K at Mach 3. Lean blowout limits showed dependence on the air mass flowrates. Visual observations, planar laser induced fluorescence (PLIF) of nitric oxide (NO), and Schlieren imaging were used to investigate these phenomena. Large differences were noted between cavity floor and cavity ramp injection schemes. Cavity ramp injection provided better performance in most cases. Ethylene pilots have a wider range of stable operation than methane. Fuel flowrates at ignition showed similar trends as lean blowout limits, but higher flowrates were required.

  • PDF

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Disintegration Process of the Rotating Fuel Injector (회전연료 분사시스템의 분열과정)

  • Jang, Seong-Ho;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.171-174
    • /
    • 2008
  • This paper presents disintegration process of the small rotational fuel injector. In order to understand disintegration precess, we measured droplet diameter, velocity and spray distribution by the PDPA(Phasse Doppler Particle Analyzer) system. Also spray was visualized by using Nd-Yag flash photography. From the test results, the liquid column emerging from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet diameter(SMD) and spray distribution were strongly influenced by the diameter of the injection orifice.

  • PDF

Development of a Grinding Robot System for the Engine Cylinder Liner's Oil Groove (실린더 라이너 오일그루브 가공 로봇 시스템 개발)

  • Noh, Tae-Yang;Lee, Yun-Sik;Jung, Chang-Wook;Oh, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

Development of a grinding robot system for the oil groove of the engine cylinder liner (실린더 라이너 오일그루브 가공 로봇 시스템 개발)

  • Noh, Tae-Yang;Lee, Yun-Sik;Jung, Chang-Wook;Lee, Ji-Hyung;Oh, Yong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1075-1080
    • /
    • 2008
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

  • PDF

A Study of Spray Characteristics for the Slinger Injector System of Micro Turbo Jet Engine (초소형 터보제트엔진 슬링거 인젝터의 분무특성)

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-358
    • /
    • 2007
  • An experimental study was performed to understand spray characteristics of the slinger injector. system for the micro turbojet engine. In this fuel injection system, fuel is sprayed and atomized in the combustor by centrifugal forces of engine shaft. This experimental apparatus consist of a high speed rotating Spindle, slinger injector, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the droplet size(SMD) is largely affected to rotational speed, mass flow rate and the number of injection orifice. From the this experimental study, we could understand the spray characteristics of the slinger injection system and obtain the optimum shape of the slinger injector nozzle which is suitable for the micro turbojet engine.

  • PDF

A Study of Spray Characteristics of the Rotating Fuel Nozzle with Orifice Diameters (회전연료노즐의 오리피스직경에 따른 분사특성연구)

  • Lee, Mae-Hoon;Jang, Seong-Ho;Lee, Dong-Hun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.51-56
    • /
    • 2010
  • An experimental study was performed to understand spray characteristics of the V type rotating fuel nozzle with orifice diameters by using high speed rotational system. The experimental apparatus consist of a high speed rotational system, fuel injection system and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, droplet size is reduced with increasing orifice diameter up to the critical value. When increasing orifice diameter over than this critical value, droplet size is not decreased with increasing the orifice diameter. This is due to the irregular distribution of the liquid sheet around the inner surface of injection orifice.

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.