• Title/Summary/Keyword: Laser Melting Deposition

Search Result 22, Processing Time 0.025 seconds

Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting (Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향)

  • Lee, S.H.;Kil, T.D.;Han, S.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing (Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석)

  • Park, Sun Hong;Jang, Jin Young;Noh, Yong Oh;Bae, Byung Hyun;Rhee, Byong Ho;Eo, Du Rim;Cho, Jung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.872-876
    • /
    • 2017
  • Laser Based 3D Printing is an recently advance manufacturing technology for making complex shape comopnent such as automobile and aerospace. So in this article, stainless steel 316L was manufactured by Selective Laser Melting (SLM) and Laser Melting Deposition (LMD) method. SLM is an additive manufacturing process that allow for the manufacture of small and complex component by laser melting and solidification of powder in bed using a high intensity laser beam. The results showed that the laser scanning speed and laser power affects the defect, microstructure and the hardness of the components.

  • PDF

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics (선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석)

  • Lee, Dong Wook;Kim, Woo Sung;Sung, Ji Hyun;Kim, Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.

Laser Additive Manufacturing Technology Review (레이저 적층 제조 기술 동향)

  • Hwang, Myun Joong;Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.15-19
    • /
    • 2014
  • Additive manufacturing technology is taking great attentions in these days because the term 3D-printing became a hot issue as the next generation manufacturing paradigm. Especially, laser additive manufacturing is at the center of interest thanks to the accuracy compared to other heat sources. In this report, recent papers about laser additive manufacturing are analyzed and reviewed. General technology is specified into three different categories and they are laser sintering, laser melting and laser metal deposition. Similarities and differences are clearly described by detailed technologies and used materials type. Representative application examples are selected then future of this technology is expected through those applications. Additionally, market of laser additive manufacturing systems itself and application fields are also predicted based on present 3D-printing market and technical progressions.

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

A Study on the Laser Melting Deposition of Mixed Metal Powders to Prevent Interfacial Cracks (레이저 용융 금속 적층 시 결함 방지를 위한 혼합 분말 적층에 관한 연구)

  • Shim, D.S.;Lee, W.J.;Lee, S.B.;Choi, Y.S.;Lee, K.Y.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.5-11
    • /
    • 2018
  • Direct energy deposition (DED) technique uses a laser heat source to deposit a metal layer on a substrate. Many researchers have used the DED technique to study the hardfacing of molds and dies. The aim of this study is to obtain high surface hardness and a sound bonding between the AISI M4 deposits and a substrate utilizing a mixed powder that contains M4 and AISI P21 powders. To prevent interfacial cracks between the M4 deposits and the substrate, the mixed powder is pre-deposited onto a JIS S45C substrate, before the deposition of M4 powders. Interfacial defects occurring between the deposits and substrate and changes in the microhardness of the intermediate layer were examined. Observations of the cross-sections of deposited specimens revealed that the interfacial cracks appeared in samples with one and two mixed layers regardless of the mixture ratio. However, the crack was removed by increasing the mixture ratio and the number of intermediate layers. Meanwhile, the microhardness in the mixed layer was found to decrease with increasing ratio of P21 powder in the mixture and that in the upper region of the deposited layers was approximately 800 HV, which was attributed to various alloying elements in the M4 powder.

The Characteristics Analysis of Track of Laser Metal Deposition Using AISI M2 Powder (AISI M2 파우더를 이용한 레이저 메탈 디포지션의 트랙 특성 분석)

  • Kim, WonHyuck;Song, MyungHwan;Park, InDuck;Kang, DaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, the characteristics analysis of LMD track, such as including track structure, track wear resistance and track thickness, were analyzed to enhance the deposition efficiency using a diode-pumped disk laser. SKD61 hot work steel plate and Fe based AISI M2 alloy were used as a the substrate and powder for the LMD process, respectively. The laser power, track pitch and powder feed rate among LMD parameters were adopted to estimate the deposition efficiency. As the laser power is increased, heat input and melting pool on the substrate is grown also increases, so resulting in the increased LMD track thickness was increased. Through EPMA mapping analysis of the cross-section in the LMD track, it was observed that all the elements are evenly distributed inside. Therefore, the entire hardness in the LMD track is expected to be almost uniform regardless of location. The characteristics of the LMD specimen were excellent compared to the STD11 specimen in terms of the wear track width and the wear rate as well as the coefficient of friction. Especially the wear rate of LMD specimen has been significantly reduced by 60 % or more. From Based on the experimental results, the prediction formula of LMD thickness was calculated by using laser power, track pitch and powder feed rate.

Fabrication of high-entropy alloy superconducting thin films via pulsed laser deposition technique

  • Soon-Gil Jung;Jeongwon Noh;Yoonseok Han;Woo Seok Choi;Won Nam Kang;Tuson Park
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.3
    • /
    • pp.27-31
    • /
    • 2024
  • We fabricate high-entropy alloy (HEA) Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 superconducting (SC) thin films via a pulsed laser deposition method. Two targets are prepared using arc melting, each followed by sintering at different temperatures: 550℃ and 700℃ for 12 hours. The films, HEA550 and HEA700, are deposited on c-cut Al2O3 substrates at a substrate temperature of 520℃, using the targets sintered at 550℃ and 700℃, respectively. The SC transition temperature (Tc) of HEA700 is 6.88 K, slightly higher than that of HEA550 (= 6.27 K). Both films exhibit similar upper critical field (Hc2) at 0 K, with 11.34 T for HEA550 and 11.40 T for HEA700. Notably, HEA700 exhibits a large critical current density (Jc) of approximately 4.4 MA/cm2 and 3.5 MA/cm2 at 2.0 K and 4.2 K, respectively, accompanying by a predominance of normal point pinning. These results indicate that the targets prepared by arc melting are beneficial for achieving a large Jc in HEA SC thin films, thus providing new avenues for improving SC critical properties of HEA thin films for their practical applications.