• Title/Summary/Keyword: Laser Glass Cutting

Search Result 27, Processing Time 0.055 seconds

Multi-layer Glass Cutting by Femtosecond Laser (극초단 레이저를 이용한 겹침 평판유리 절단)

  • Shin, Hyun-Myung;Lee, Young-Min;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.382-386
    • /
    • 2012
  • A femtosecond laser with 775nm central wavelength and 150 fs of temporal pulse width was used for multi layered glass cutting applications. Ultrashort pulse was effectively used for clean glass cutting with $50{\mu}m$ depth and minimum cutting width. Laser beam was split to two stages and focused on the top surfaces of each layer. Ablation threshold of used glass was measured to be $2.59J/cm^2$. In experiments, 200mW laser power and 1mm/s scanning speed was used for preliminary experiment. Air gap was the major defect occurring parameter and laser power was less sensitive to glass cutting in the experiment. The maximum cutting speed was measured to be 60mm/min with 2kHz, however, Maximum 3m/min cutting speed can be achievable with a commercially available laser with 100kHz.

Processing Evaluations of the Eagle Glass Cutting Using Pico-second Laser (피코초 레이저를 이용한 Eagle Glass 절단 시 가공성 평가)

  • Lee, Sang Kyun;Lee, Young Gon;Kim, Jae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.403-408
    • /
    • 2013
  • In this paper, the characteristics of ablation processing of the eagle glass by pico-second laser are investigated. The laser ablation is used to process micro forms on materials. The ablation causes little thermal effect and little burr on the surface of eagle glass. In order to examine the characteristics of panic cracks, experiments are conducted under various cutting conditions such as a frequency of 600 kHz, laser powers, scan speeds and number of scan(NS). To minimize the panic cracks, the specimens are heated at $30^{\circ}C$, $45^{\circ}C$, and $60^{\circ}C$ for ten minutes respectively and then they are broken by hands. Laser powers, NS and scan speeds have an effect on glass cutting results. The ablation depths increase with an increase in the laser power and NS whereas the panic cracks decrease with an increase in scan speed. The high temperature on processed specimens reduces the panic cracks and makes good results of laser cutting. The optimal condition for eagle glass laser cutting is found to be at 30 W of laser power, 3 mm/s of scan speed and 500 of NS, respectively.

Femto-Second Laser Glass Cutting for Flat Panel Display (펨토초 레이저를 이용한 평판 디스플레이 유리기판 절단 연구)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.247-252
    • /
    • 2008
  • A laser glass cutting system using a femto-second laser was evaluated for Flat Panel Display (FPD) glass. A theoretical analysis of the ablation threshold and depth is described using an explicit analytic form. Experiments for clean and deep grooves were performed using a 3W femto-second laser, and the relationships between the input energy and the scribing depth as well as the threshold energy are presented. Mechanical breaking after the scribing process was carried out and the results are compared with a theoretical method. It was found that a two-sided LCD panel glass can be cut clearly using the laser cutting method. The methodology was found to be very effective as a mass-production cutting system.

The Fracture Effect of a Non-Symmetric Laser Beam on Glass Cutting (비대칭 레이저 빔에 의한 유리 절단 시 파단 효과)

  • Yoon, Sangwoo;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.428-433
    • /
    • 2015
  • A non-symmetric laser beam was used for cutting a thin glass substrate and its effect was investigated. In laser cutting of brittle materials, controlling crack initiation on the surface is crucial; however, it is difficult to ensure that crack propagation occurs according to a designed laser path. A lot of deviation in crack propagation, especially at the edge of the substrate, is usually observed. A non-symmetric laser beam generates a non-uniform energy distribution, which enhances directional crack propagation. A 20-W pulsed YAG laser was used for cutting a thin glass substrate. Parametric analysis was carried out and the crack control of the non-symmetric laser beam was improved. A theoretical model was presented and the limitations of the proposed process were also discussed.

New CO Laser Technology Offers Processing Benefits

  • Held, Andrew
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • The development of a reliable, high-power source of mind-IR laser light gives process develop important tool with unique characteristics that will significantly impact a diverse range of applications.

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

레이저를 이용한 LCD 유리 절단 기술

  • Jeong, Jae-Yong;O, Dae-Hyeon;Yu, Gi-Ryong;Lee, Cheon;Lee, U-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.219-223
    • /
    • 2005
  • Nowadays laser cutting is the most promising method of cutting FPD(Flat Panel Display) glass in mass-production line. And this method can also be used to cut other brittle materials such as quartz, sapphire, ceramic and semiconductor The concept of this method is shown in picture 1. Laser beam heats glass up to strain point, not to melting point and cooling system chills glass to induce maximun thermal stress in glass surface and then the thermal stress generates micro thermal crack, in other words blind depth of crack, along laser beam and cooling line.

  • PDF

Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas (I) (삼중수소 활용을 위한 자발광유리관 (SLGT) 제조기술)

  • Kim Kwangsin;Kim Kyeongsook;Chung Eun-Su;Son Soon Hwan;Nam Gi-Jung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.87-95
    • /
    • 2005
  • Laser sealing/cutting technique, one of the 4 core technologies to manufacture self-luminous glass tubes (SLGTs) has been developed. Through the analysis of commercial products it is found that Pyrex Is used for SLGTs. A CO2 laser, which is commonly used for glass work was used for the study The factors affecting the sealing/cutting were laser intensity, duration. Irradiation method, and pressure inside the tube. The whole Process is composed of 2 stages. In the first stage. both ends of the tubes are sealed while tritium is insected in the tubes. And the tritium sealed tubes are cut in the desired size in the second stage. Defocused beam was used for seal ing and focused beam was used for cutting. After the sealing/cutting, the tubes were heat treated to prevent fracture due to the residual heat stress.

  • PDF