• Title/Summary/Keyword: Laser Focusing

Search Result 173, Processing Time 0.029 seconds

Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology (마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상)

  • 이인환;조동우;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

A study on the influence of process parameters during laser welding of sheet steels (강판의 레이저 용접시 공정변수의 영향에 관한 연구)

  • Park, Young-Soo;Lee, Yoon-Sik;Kim, Hyung-Sik;Kim, Chan
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 1999
  • This paper describes the weldability of carbon steel and stainless steel using 5㎾ $CO_2$ laser system with nearly multi-mode beam and a parabolic focusing mirror. In the laser welding of steels, major welding parameters are focal point, travel speed, beam power, shield gas and gap tolerance, etc.. Two kinds of gases(Ar, He) were used as a assist gas and supplied through the external nozzle. It is very important for optimum condition to remove plasma plume which absorbs laser beam and to obtain deep penetration and sound weld bead. Bead-on-plate welding tests were carried out for the experiments. Penetration data were obtained with various welding parameters and the effects of welding parameters were discussed. Butt welding tests were performed with various conditions. Only the optimum laser parameters assured good weld quality As a result of this study, We achieve the fundamental weldabilities using a high power $CO_2$ laser for carbon steel and stainless steel.

  • PDF

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Development of modern bag design using cultural content from Baekje - Focusing on laser-cutting techniques - (백제 문화콘텐츠의 현대적 활용을 위한 가방 디자인 개발 - 레이저커팅 기법을 중심으로-)

  • Ha, Seung Yeon
    • The Research Journal of the Costume Culture
    • /
    • v.28 no.6
    • /
    • pp.738-754
    • /
    • 2020
  • As a cultural feature of, the relics of the Royal Tomb of King Muryeong are suitable design content for applying with sophisticated production and delicate molding laser cutting techniques. The purpose of this study is to develop modern bag designs using relics of the Royal Tomb of King Muryeong of Baekje using laser-cutting techniques. First, the historical background and meaning of Baekje's cultural content were explored. Second, the principle of laser-cutting techniques were explored, laser-cutting techniques applied to modern fashion and bag design were examined, and bag design characteristics were analyzed. Third, based on prior research, the criteria for the development of bag design, from which eight bag design were developed that combine modern popularity and functionality utilizing Baekje cultural content and using laser-cutting techniques to apply the textile design developed by researchers in 2013 (modified to match laser-cutting techniques). The research results show that bag were clutch, tote, shoulder, and mini. Gold, silver, brown, beige, and navy colors were arranged, based on black/white contrast. Cow, lambskin, washed snakeskin, mesh, and Saffiano leather were used. For the pattern-applying technique, this study showed that a new digital technique, which is laser-cutting techniques could be combined with contemporary bag designs. Moreover, a bag design was developed that has a modern sense and functionality as well as Korean formativeness, which is significant.

Improvement of pulse characteristics of glass laser oscillator (글라스 레이저 발진기의 출력펄스특성의 개선에 관한 연구)

  • 강형부
    • 전기의세계
    • /
    • v.29 no.5
    • /
    • pp.321-328
    • /
    • 1980
  • The Q-switching oscillator of TE $M_{00}$ mode was constructed in order to improve the properties of energy focusing and amplification, and prevent laser materials from breakdown. The Q-switching was done by means of electro-optical effect using Glan prism and KDP Pockels cell. Sharp laser pulse of risetime-1 ns and variable pulse width 2-10 ns was obtained from Q-switching laser pulse by PTM method using a laser triggered spark gap (LTSG), Glan prism and Pockels cell. A single ultra-short pulse (picosec order in pulse width) was obtained from mode-locked pulse train in combination of a mode-locked oscillator using saturable dye cell with pulse shaping system using PTM method.d.

  • PDF

Defect Detection Using Focused Lamb Waves Generated by Laser (집속형 레이저 유도초음파에 의한 결함검출)

  • Kim, Hong-Joon;Jung, Ji-Hong;Ha, Job;Jhang, Kyung-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.774-779
    • /
    • 2003
  • Arc-shaped line array slits have been used for the laser generation of focused Lamb waves. The spatially expanded Nd:YAG pulse laser was illuminated through the arc-shaped line array slit on the surface of a sample plate to generate the Lamb waves of the same pattern as the slit. Then the generated Lamb waves were focused at the point of which distance from the slit position is dependent on the curvature of slit arc. The proposed method showed better spatial resolution than the conventional linear array slit in the detection of laser machined linear defect and drill machined circular defect on aluminum plates of 1mm thickness.

  • PDF

Material Dependence of Laser-induced Breakdown of Colloidal Particles in Water

  • Yun, Jong-Il
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.34-39
    • /
    • 2007
  • Laser-induced breakdown of colloidal suspensions, such as polystyrene, $ZrO_2$, and $SiO_2$ particles in diameters of 100-400 nm in water is investigated by nanosecond flash-pumped Nd:YAG laser pulses operating at a wavelength ${\lambda}$= 532 nm. The breakdown threshold intensity is examined in terms of breakdown probability as a function of laser pulse energy. The threshold intensity for $SiO_2$ particles ($1.27{\times}10^{11}\;W/cm^2$) with a size of 100 nm is higher than those for polystyrene and $ZrO_2$ particles with the same size, namely $5.7{\times}10^{10}$ and $5.5{\times}10^{10}\;W/cm^2$, respectively. Results indicate that the absorption of five photons is required to induce ionization of $SiO_2$ particles, whereas the other particles necessitate four-photon absorption. These breakdown thresholds are compared with those measured by nanosecond pulses from a diode-pumped Nd:YAG laser having a different focusing geometry.

Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material (입체면 복합 폴리머 소재의 전도성 패턴 제작 기술)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.224-234
    • /
    • 2016
  • This study developed the conductivity pattern of solid surface using laser direct pattern and compound polymer material technology. For development direct patterning system of solid surface, we used the laser power stabilizer, the dynamic focusing, 3D scanner S/W and the auto aligning techniques. Also For conductivity pattern, we are developed compound polymer material with additive by electro-less plating. These technologies are already used commercially. However operation and control integrated system for direct patterning of solid surface are not yet developed. The objective of this paper is to introduce the laser direct structuring for simple process improvement instead complex PCB process, and develop the operating stability and integration system. Also we implemented new application of laser direct structuring through sample manufacture.

Laser Generation of Focused Lamb Waves

  • Jhang, Kyung-Young;Kim, Hong-Joon;Kim, Hyun-Mook;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.637-642
    • /
    • 2002
  • An arc-shaped line array slit has been used for the laser generation of focused Lamb waves. The spatially expanded Nd:YAG pulse laser was illuminated through the arc-shaped line array slit on the surface of a sample plate to generate the Lamb waves of the same pattern as the slit. Then the generated Lamb waves were focused at the focal point of which distance from the slit position is dependent on the curvature of slit arc. The proposed method showed better spatial resolution than the conventional linear array slit in the detection of laser machined linear defect and drill machined circular defect on aluminum plates of 2mm thickness. Using the focused waves, we could detect the linear defect and the circular defect with the improvement of spatial resolution. The method can also be combined with the scanning mechanism to get an image just like by the scanning acoustic microscope(SAM).

Development of An Automated Scanning Laser Doppler Vibrometer For Measurements of In-Plane Structural Vibration (평면 구조 진동 측정을 위한 자동화된 스캐닝 레이저 도플러 진동측정기의 개발 및 연구)

  • 길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.422-430
    • /
    • 1996
  • The automated scanning laser Doppler vibrometer (LDV) has been designed, and built to measure in-plane displacements associated with waves propagating on vibrating structures. Use of optical fibers allows the compact design of a laser probe head which can be scanned over the vibrating structures. An algorithm for automated self-alignment of the laser probe is developed. The system is completely automated for scanning over the structures, focusing two laser beams at each data point until the detected vibration signal is stable, and for recording and transferring the data to a system computer. The automated system allows one to get extensive data of the vibration field over the structures. The system is tested by scanning a piezoelectric cylindrical shell and a plate excited by a continuous signal and by a pulse signal, respectively. Results show that the automated scanning LDV system can be a useful tool to measure the in-plane vibration field and to detect the elastic waves propagating on the vibrating structures.

  • PDF