• Title/Summary/Keyword: Laser Focusing

Search Result 173, Processing Time 0.035 seconds

Process monitoring of laser welding using chromatic filtering of thermal radiation (열복사의 색수차 공간여과를 이용한 레이저용접 감시기술)

  • 백성훈;박승규;김민석;정진만;김철중
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.18-26
    • /
    • 1999
  • An innovative real-time weld monitoring technique using chromatic filtering of the thermal radiation from a weld pool is developed. The thermal radiation from the weld pool is focused on an aperture and the transmitted thermal radiation is monitored at two wavelengths with high-speed single-element detectors. Due to the chromatic aberration introduced in the focusing optics, the transmittance curve of thermal radiation varies by the wavelength. Owing to this difference in the transmittance, the local variation of thermal radiation from the weld pool can be monitored by processing the two spectroscopic signals from two detectors. In this paper, the algorithms to monitor the laser power on the weld specimen and the focus shift we investigated and the performances of laser power and focus monitoring are shown for a pulsed Nd:YAG laser welding. The monitoring of the weld pool size variation is also discussed.

  • PDF

Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses (펨토초 레이저에 의한 투명 유리내부 미세가공특성)

  • Nam Ki-Gon;Cho Sung-Hak;Chang Won-Seok;Na Suck-Joo;Whang Kyung-Hyun;Kim Jae-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.

Femtosecond laser induced shock generation and its application (펨토초 레이저 유발 shock 형성 및 그 응용)

  • Jeoung, Sae Chae;Lee, Heung Soon;Sidhu, M.S.;Moon, Heh-Young
    • Laser Solutions
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • Femtosecond laser induced shock generation in water and vitreous humor of enucleated porcine eyeball was investigated. When focusing the femtosecond laser into the liquid mediums, the acoustic waves with a frequency of about 15.6kHz could be observed by using wide-band microphone. The amplitude of the acoustic signals from water has attained a maximum under a laser power of about 5mW. Further increment of the power results in a decrement of the acoustic signals due to nonlinear optical process including filamentation of laser beam. We have further investigated the effect of femtosecond laser induced acoustic waves by applying the laser pulse into enucleated porcine eyeball. The comparative studies on both healthy and diseased eyeballs led us propose that the femtosecond laser pulses could be utilized as a novel tools for treatment of partially detached retina layers from their choroid structures.

  • PDF

High speed key-hole welding by fiber laser (파이버 레이저에 의한 고속 키 홀 용접)

  • Park Seo-Jeong;Jang Ung-Seong;Cheon Chang-Geun;Ju Seong-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.195-197
    • /
    • 2006
  • The present study examined the characteristics of high speed welding thin metal sheet using single mode fiber laser of averaged maximum output power 300 W. Due to the fiber laser that has a good quality of beam can make a very small focusing beam size, thin metal sheet welding and high speed key hole welding can be peformed by high power density.

  • PDF

A Study on the Focusing Actuator of Ultra Small Optical Drive (초소형 광드라이브용 포커싱 액츄에이터 설계 연구)

  • 손도현;홍삼열;김진아;김영중;최인호;김진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • Ultra small optical drive or PCMCIA type needs a focusing actuator because or applying Blue Laser and enhancing compatibility according to disk physical specification. Based on this need, this paper presents a novel focusing actuator adapted for ultra small optical drive of PCMCIA type. The focusing actuator using Lorenz force generated consists of coil, magnets and plate springs of pivoting. The design issues of the focusing actuator are the flexibility to focus direction, the rigidity to track direction and the higher natural mode of the moving part. For settling these Issues, this paper present mechanical design, computer simulations and test results of the realized focusing actuator. Finally, suitability and usefulness of the focusing actuator was demonstrated by the comparison of simulations and test results in a view of the possibility adapted for ultra small optical drive.

  • PDF

Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging (고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발)

  • Lee, Jun Ho;Nam, Hyo Seok;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak;Ji Yong Joo;Jun Ho Lee;Ji In Kim;Soo Hyung Cho;Ki Soo Park;Eui Seung Son
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.382-390
    • /
    • 2024
  • Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

Laser Auto Focus Using Non-Touch Sensor (비접촉 센서를 이용한 레이저 자동 포커싱)

  • 장정원;김재구;신보성;장원석;최지연
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.280-283
    • /
    • 2003
  • In this paper, there was finding laser beam focal length using the camera at the work with laser preprocess. A process have some similarity that the laser direct writing was condition of unused other light source in order to a partical object of working substrate, so we worked finding focal length using yellow light. As we found focal lengths from three points of substrate edges, The focal length of all substrates was able to be computed by calculating a plane equation using these three point. Also we make a device and software that can automatically perform all of the processes.

  • PDF

Fabrication of Fresnel zone plate with femtosecond laser lithography technology (펨토초 레이저 리소그라피 기술을 이용한 Fresnel zone plate 제작 연구)

  • Sohn, I.B.;Noh, Y.C.;Ko, M.J.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.13-16
    • /
    • 2011
  • We fabricated the Fresnel zone plate using femtosecond laser lithography-assisted micro-machining, which is a combined process of nonlinear lithography and wet etching. We investigated the focusing properties by launching a 632.8nm wavelength He-Ne laser beam into the zone plate. The spot size of the primary focal point was $27{\mu}m$ and the intensity of focal point was 0.565W/$cm^2$.

  • PDF