• Title/Summary/Keyword: Laser Doppler Velocimetry (LDV)

Search Result 57, Processing Time 0.021 seconds

LDV Measurement for the Mixing Effect of the Rotator Shape in a Confined Cylinder (밀폐된 원통내부에서 회전체의 형상에 따른 혼합효과에 대한 LDV 측정)

  • Park, Cheon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.720-726
    • /
    • 2001
  • Two-dimensional, angle-resolved LDV(Laser Doppler Velocimetry) measurements of the turbulent rotating flow field in a confined cylinder have been performed. The configurations of interest are flows between a rotating upper disk with a rod attached by a disk or impeller(${\theta}= 90^{\circ},\;45^{\circ}$) and a stationary lower disk in a confined cylinder. The mean flow velocity as well as the turbulent intensity of the flow field have been measured. The results show that the flow is strongly dependent on the position of the impellers or the disk, negligibly affected by the Reynolds number in turbulent flow. It is observed that the mixing effect of the axial flow impeller(${\theta}= 45^{\circ}$) is better than that of the radial flow impeller(${\theta}= 90^{\circ}$) or a disk.

  • PDF

Experimental Study on Hydraulic Characteristics and Vorticity Interactions of Floating Breakwaters (부유식방파제의 수리특성 및 와 상호작용에 관한 실험적 연구)

  • Yoon, Jae-Seon;Son, Hyok-Jun;Chun, Si-Young;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.175-183
    • /
    • 2010
  • In this study, laboratory experiments are conducted to investigate flow-fields around floating breakwaters by using the LDV(Laser Doppler Velocimetry) system. The LDV system is a well-known equipment to measure fluid particle velocities in laboratory experiments. Although the system requires great efforts and enormous time for measurements, it can provide precise velocity fields comparing to other available equipments. Various types of drafts and shapes for breakwaters are employed in laboratory experiments to analyze a relation between flow-fields and vorticity. A series of numerical experiments are also carried out by using a two-dimensional Navier-Stokes equations model. Numerically predicted results are compared with laboratory measurements.

Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines (Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향)

  • 유성출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Analysis of Tumble Decay Mechanism through LDV Measurement in an Engine (LDV측정을 통한 엔진내 텀블감쇄 메카니즘 해석)

  • 강건용;이진욱;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2773-2778
    • /
    • 1994
  • Tumbling motion is very effective for turbulence enhancement during compression process in the cylinder of 4-valve engines. In this paper the tumble decay mechanism for different intake port configuration were measured using laser Doppler velocimetry. Analysis of the tumble decay mechanism was achieved by means of two non-dimensional parameters, defined as tumble eccentricity and shape factor in tumble velocity profile, in addition to the tumble moment.

Development of LDV(Laser Doppler Velocimetry) for Measuring Three Dimensional Hull Wake of Ship Model in Large Cavitation Tunnel (대형 캐비테이션 터널 내 선박 모형의 3차원 선체 반류 계측을 위한 레이저 유속계 개발)

  • Paik, Bu-Geun;Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup;Cheon, Ho-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.515-521
    • /
    • 2017
  • Large Cavitation Tunnel (LCT) of KRISO enables us to conduct cavitation tests of the propeller attached to a ship model. As the ship model tests are done at rather high Reynolds number of 107~108, flow measurement system such as pitot tube cannot be employed because of structural safety problems in its system and difficulties in installing it within the test section. Thus, KRISO has developed new 3-D LDV system used in large test section of LCT. There are several difficulties in using 3-D LDV, which did not allow efficient operation of it. The first trouble was the calibration using the conventional pin hole. To make the focus with same laser-beam waists at the wanted position, the high spatial resolution CCD is utilized in the calibration procedure for 3-D LDV. The off-axis configuration provides two velocity components in the horizontal plane and on-axis configuration gives third velocity component in the vertical plane. The horizontal velocity components are also obtained in the coincidence mode, which prevents any misleading results in the off-axis configuration. The nominal wake of Aframax tanker model is measured by the developed 3-D LDV system. The measured hull wake showed good agreement with that obtained by CFD calculation.

Functional Improvement of Floating Breakwaters with Long Wave Kinetics (장주기 및 유동성분을 고려한 부유식방파제의 방파성능 개선)

  • Yoon, Jae-Seon;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • In this study, a series of laboratory experiments are carried out to analyze fluid behaviors around multi-arranged (2 pieces) floating breakwaters with various parameters such as distance between structures, wave periods and steepness. The rate of wave transmission is shown to be affected directly by wave periods of incident waves and the breakwaters with multi-arranged structures show the highest rate of wave protection compared with other cases. The velocity fields around the breakwaters are measured by using the Laser Doppler Velocimetry system. The transmission coefficients are also measured in laboratory experiments. Finally, laboratory observed data are compared with numerical experimental results and analyzed in detail.

Turbulence Kinetic Energy Budgets of Tip Vortex Generated by a Fixed Wing (고정익 끝완류의 난류 운동에너지 분배 특성)

  • Bae, Hwang;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1444-1452
    • /
    • 1999
  • The turbulence structure of e. tip vortex generated by e. fixed wing was investigated with the use of two-dimensional laser Doppler velocimetry. The velocity field, composed of circumferential end axial components, was measured on the vertical section to the vortex trail, located at 2C downstream from the wing tip in the incoming flow condition of $Re=2.24{\times}10^5$. A quasi 3-dimensional measurement technique by use of 2-dimensional LDV system was suggested for Reynolds stresses and the higher moments. The validity of this technique was confirmed with the uncertainty analysis. The budget of the turbulence kinetic energy was analyzed by those results in the radial direction of the vortex core. It is resulted that the production is to be very likely balanced with the dissipation in most range of the vortex core.

An Experimental Study of In-Cylindeer Flow Characteristics of a High Speed Direct Injection Diesel Engine (고속 직접분사식 디젤엔진의 실린더내 유동특성에 관한 실험적 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In-cylinder flow of a purpose-built small HSDI Hydra Diesel engine was investigated by laser Doppler velocimetry(LDV) during induction and compression processes. The flow was quantified in terms of ensemble-averaged axial and swirl velocities, normalized by the mean piston speed, at a plane located 12mm from the cylinder head and corresponding to the mid-plane of the diametrically-opposed quartz windows at an enigne speed of 1000rpm. The formation of toroidal vortices during the intake process and the evolution and decay of swirl motion during the compression process were observed. Turbulence at around TDC of compression became homogeneous and isotropic.

  • PDF

A study on the simultaneous measurement of spray-droplet size and velocity by LDV (LDV에 의한 噴霧液適의 크기 및 速度의 同時測定에 관한 硏究)

  • 이흥백;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.566-574
    • /
    • 1988
  • A study is described for obtaining real time in situ size and velocity measurements of the spray-droplet using crossed-beam interferometry. The optical arrangement is similar to dual-beam laser Doppler velocimetry(LDV). Droplets passing trough the probe volume scatter light to the collecting lens placed at 90.deg. off-axis angle. The dual-beam light scatter is analyzed by the geometric optics theory to relate the scattered fringe pattern to droplet diameter. The droplet size measurement is based upon the signal visibility. As the system is based on the Doppler effect, a single component of velocity is velocity is extracted concurrent with the size information. The validity of the method is evaluated by comparing its performance to widely accepted but limited technique, the collection method. By using 90.deg. off-axis scatter detection angle, the measurement of the droplet size and velocity distributions, and the local correlations between droplet sizes and velocities in relatively dense spray environments are made possible.