• Title/Summary/Keyword: Laser Direct Patterning

Search Result 63, Processing Time 0.033 seconds

Femtosecond Laser Lithography for Maskless PR Patterning (펨토초 레이저를 이용한 미세 PR 패터닝)

  • Sohn, Ik-Bu;Ko, Myeong-Jin;Kim, Young Seop;Noh, Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Laser Stream Patterning Improvement for Gravure Printing (그라비아 인쇄를 위한 Laser Stream Patterning 개선)

  • Ahn T. Y.;Kim H. G.;Lee D. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.186-189
    • /
    • 2001
  • The main method in micro-etching process, used in manufacturing semiconductors, electronic components, circuits, is Photo Masking method that exposes and develops on the photo-sensitivity solutions or films. This method enables one to process highly precisely, $\pm$0.03 mm in end line location area. But this has limits in a high speed / wide width process, difficulties in endless masking, and the problem of high price. We have developed the direct masking method to make use of Gravure printing, widely used in grocery packing sheet printing. We made cylinder tools to influence the masking quality by laser stream process. We have confirmed that the end line location accuracy in the line width of the product is improved from 0.12 mm to $\pm$0.07 mm level, after etching process.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Selective Laser Direct Patterning of Indium Tin Oxide on Transparent Oxide Semiconductor Thin Films

  • Lee, Haechang;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.6-11
    • /
    • 2019
  • For a wider application of laser direct patterning, selective laser ablation of indium tin oxide (ITO) film on transparent oxide semiconductor (TOS) thin film was carried out using a diode-pumped Q-switched Nd:YVO4 laser at a wavelength of 1064 nm. In case of the laser ablation of ITO on indium gallium zinc oxide (IGZO) film, both of ITO and IGZO films were fully etched for all the conditions of the laser beams even though IGZO monolayer was not ablated at the same laser beam condition. On the contrary, in case of the laser ablation of ITO on zinc oxide (ZnO) film, it was possible to etch ITO selectively with a slight damage on ZnO layer. The selective laser ablation is expected to be due to the different coefficient of thermal expansion (CTE) between ITO and ZnO.

Direct write patterning of ITO film by Femtosecond laser ablations

  • Farson, Dave;Choi, Hae-Woon;Kim, Kwang-Ryul;Hong, Soon-Kug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.583-588
    • /
    • 2005
  • Indium tin oxide (ITO) is a commonly used conducting transparent oxide film (CTO) used in flat panel display applications. Direct write laser ablation is sometimes employed for ITO patterning and it is important that the substrate material and remaining ITO be affected as little as possible by the laser ablation. In this investigation, femtosecond laser ablation of ITO was studied to identify laser processing parameters which cleanly ablated ITO with a minimum of damage to a glass substrate and surrounding ITO. The Ti:Sapphire chirp pulse amplified femtosecond laser used for the experiments had a wavelength of 775nm and produced pulses with a duration of 150fs at a rate of 2 kHz. Ablation was carried out at a sufficiently high panel scanning speed that single ablation spots could be studied. The pulse energy was adjusted to determine feasible spot diameters and depths which could be ablated into the ITO without damaging the glass substrate. Next, ablation of lines without glass damage was also demonstrated. Experiments were also performed with a high repetition rate (100kHz) femtosecond laser.

  • PDF