• Title/Summary/Keyword: Laser Calibration

Search Result 251, Processing Time 0.027 seconds

Application of Laser-Induced Breakdown Spectroscopy (LIBS) for In-situ Detection of Heavy Metals in Soil (토양내 중금속 실시간 탐지를 위한 레이저 유도붕괴 분광법의 활용에 대한 소개)

  • Ko, Eun-Joung;Hamm, Se-Yeong;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.563-574
    • /
    • 2007
  • Laser induced breakdown spectroscopy (LIBS) is a recently developed analytical technique that is based upon the measurement of emission lines generated by atomic species close to the surface of the sample, thus allowing their chemical detection, identification and quantification. With powerful advantages of LIBS compared to the conventional analytical methodology, this technique can be applied in the detection of heavy metals in the field. LIBS allows the rapid analysis by avoiding laborious chemical steps. LES have already been applied for the determination of element concentration in a wide range of materials in the solid, liquid and gaseous phase with simplicity of the instrument and diversity of the analytical application. These feasibility of rapid multi elemental analysis are appealing proprieties for the in-situ analytical technique in geochemical investigation, exploration and environmental analysis. There remain still some limitations to be solved for LIBS to be applied in soil environment as an in-situ analytical technology. We would like to provide the basic principle related to the plasma formation and laser-induced breakdown of sample materials. In addition, the matrix effect, laser properties and the various factors affecting on the analytical signal of LIBS was dealt with to enhance understanding of LIBS through literature review. Ultimately, it was investigated the feasibility of LIBS application in soil environment monitoring by considering the basic idea to enhance the data quality of LIBS including the calibration method for the various effects on the analytical signal of LIBS.

The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System (머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.301-306
    • /
    • 2012
  • We propose a method for accurate image acquisition in a machine vision system in the present study. The most important feature is required by the various lenses to implement real and of the same high quality image-forming optical role. The input of the machine vision system, however, is generated due to the aberration of the lens distortion. Transformation defines the relationship between the real-world coordinate system and the image coordinate system to solve these problems, a mapping function that matrix operations by calculating the distance between two coordinates to specify the exact location. Tolerance Focus Lens caused by the lens aberration correction processing to Galvanometer laser precision machining operations can be improved. Aberration of the aspheric lens has a two-dimensional shape of the curve, but the existing lens correction to linear time-consuming calibration methods by examining a large number of points the problem. How to apply the Bilinear interpolation is proposed in order to reduce the machining error that occurs due to the aberration of the lens processing equipment.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF

Development of accuracy for the statical inclinometer by error analysis (다축 수준기의 오차분석을 통한 측정 정밀도 향상)

  • Lee J.K.;Park J.J.;Cho N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1797-1802
    • /
    • 2005
  • In this study, we were developed an accuracy of the proposed two dimensional statical inclinometer what used a position sensitive detector(PSD) by an error analysis. The inclinometer consists of a laser source, a mass, an optic-fiber, and a PSD. The gravity direction on a base platform of the inclinometer is changed by an unknown inclination angle. And a laser spot is moved from the origin to another position of a PSD following a variation of an optical path by the gravity. These processes enable the inclinometer to estimate the inclination angle from distance information of the moving spot. A design methodology on the basis of a sensitivity analysis was applied to improve the measurement performance such as a full measuring range and a resolution. But it still has error factors, so we analyze the uncertainty of the inclinometer to evaluate the systematic errors from alignments, assembly error and so on. The experimental performance evaluation about the design objectives as a measuring range and a resolution was performed. And the validity and the feasibility of the design process were certified by an experimental process. Systematic errors eliminated to improve the accuracy of the inclinometer by the corrected measuring model from the calibration process between the inclination angle and the PSD position instead of the nominal measuring model. The ANOVA(analysis of variance) confirmed the effect of eliminating the systematic errors in the inclinometer. From these methodologies, the proposed inclinometer was able to measure with a high resolution(35.14sec) and a wide range(from $-15^{\circ}\;to\;15^{\circ}$

  • PDF

DESIGN OF AN UNMANNED GROUND VEHICLE, TAILGATOR THEORY AND PRACTICE

  • KIM S. G.;GALLUZZO T.;MACARTHUR D.;SOLANKI S.;ZAWODNY E.;KENT D.;KIM J. H.;CRANE C. D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • The purpose of this paper is to describe the design and implementation of an unmanned ground vehicle, called the TailGator at CIMAR (Center for Intelligent Machines and Robotics) of the University of Florida. The TailGator is a gas powered, four-wheeled vehicle that was designed for the AUVSI Intelligent Ground Vehicle Competition and has been tested in the contest for 2 years. The vehicle control model and design of the sensory systems are described. The competition is comprised of two events called the Autonomous Challenge and the Navigation Challenge: For the autonomous challenge, line following, obstacle avoidance, and detection are required. Line following is accomplished with a camera system. Obstacle avoidance and detection are accomplished with a laser scanner. For the navigation challenge, waypoint following and obstacle detection are required. The waypoint navigation is implemented with a global positioning system. The TailGator has provided an educational test bed for not only the contest requirements but also other studies in developing artificial intelligence algorithms such as adaptive control, creative control, automatic calibration, and internet-base control. The significance of this effort is in helping engineering and technology students understand the transition from theory to practice.

Computer Vision Based Efficient Control of Presentation Slides (컴퓨터비전에 기반한 효율적인 프리젠테이션 슬라이드 제어)

  • 박정우;석민수;이준호
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.232-239
    • /
    • 2003
  • This paper discusses the design and implementation of a human-oriented interface based on computer vision that efficiently controls presentation slides. The user does not have to be confined to a keyboard or mouse any more, and can move around more freely because slides for presentation can be up and down using a general laser pointer that is used for presentation. Regions for virtual buttons are set on the slide so that the user can conveniently point the buttons using the laser pointer. We have proposed a simple and efficient method that computes the button areas in the image without complicated calibration. The proposed method has been implemented based on Microsoft PowerPoint ; moreover it can be applied to other PowerPoint-like presentation softwares. Our method for human-centered slide control enables the user to give audiences a more interactive presentation in a natural way.

Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning (X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류)

  • Kim, Eun-Ah;Kwon, Se-Hun;Yang, Dong-Yeol;Yu, Ji-Hun;Kim, Kwon-Ill;Lee, Hak-Sung
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

Development of underwater 3D shape measurement system with improved radiation tolerance

  • Kim, Taewon;Choi, Youngsoo;Ko, Yun-ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1189-1198
    • /
    • 2021
  • When performing remote tasks using robots in nuclear power plants, a 3D shape measurement system is advantageous in improving the efficiency of remote operations by easily identifying the current state of the target object for example, size, shape, and distance information. Nuclear power plants have high-radiation and underwater environments therefore the electronic parts that comprise 3D shape measurement systems are prone to degradation and thus cannot be used for a long period of time. Also, given the refraction caused by a medium change in the underwater environment, optical design constraints and calibration methods for them are required. The present study proposed a method for developing an underwater 3D shape measurement system with improved radiation tolerance, which is composed of commercial electric parts and a stereo camera while being capable of easily and readily correcting underwater refraction. In an effort to improve its radiation tolerance, the number of parts that are exposed to a radiation environment was minimized to include only necessary components, such as a line beam laser, a motor to rotate the line beam laser, and a stereo camera. Given that a signal processing circuit and control circuit of the camera is susceptible to radiation, an image sensor and lens of the camera were separated from its main body to improve radiation tolerance. The prototype developed in the present study was made of commercial electric parts, and thus it was possible to improve the overall radiation tolerance at a relatively low cost. Also, it was easy to manufacture because there are few constraints for optical design.

Turbidity Calibration of Borehole Roughness Measurement System (BKS-LRPS) Usable in Water (수중에서 사용가능한 굴착공 벽면거칠기 측정 시스템(BKS-LRPS)의 굴착공 내 혼탁도 보정에 관한 연구)

  • Park, Bong-Geun;Choi, Yong-Kyu;Kim, Myung-Hak;Kwon, Oh-Kyun;Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2008
  • Based on recent studies, the side resistance of rock socketed drilled shafts was affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness was affected by rock types and joints, drilling methods, and diameters of pile. In this study, a new roughness measurement system (BKS-LRPS, Backyoung-KyungSung Laser Roughness Profiling System) usable in water was developed. Based on the laboratory model tests, an EMD (Effective Measurement Distances) according to various turbidity was proposed as $EMD=1149.2{\times}T_{b}^{-0.64}$.

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao;Linbo Zhang;Dongdong Jiao;Guanjun Xu;Xue Deng;Qi Zang;Honglei Yang;Ruifang Dong;Tao Liu;Shougang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.45-55
    • /
    • 2024
  • A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.