Browse > Article

Application of Laser-Induced Breakdown Spectroscopy (LIBS) for In-situ Detection of Heavy Metals in Soil  

Ko, Eun-Joung (Division of Earth Environmental System, College of Natural Science, Busan National University)
Hamm, Se-Yeong (Division of Earth Environmental System, College of Natural Science, Busan National University)
Kim, Kyoung-Woong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
Publication Information
Economic and Environmental Geology / v.40, no.5, 2007 , pp. 563-574 More about this Journal
Abstract
Laser induced breakdown spectroscopy (LIBS) is a recently developed analytical technique that is based upon the measurement of emission lines generated by atomic species close to the surface of the sample, thus allowing their chemical detection, identification and quantification. With powerful advantages of LIBS compared to the conventional analytical methodology, this technique can be applied in the detection of heavy metals in the field. LIBS allows the rapid analysis by avoiding laborious chemical steps. LES have already been applied for the determination of element concentration in a wide range of materials in the solid, liquid and gaseous phase with simplicity of the instrument and diversity of the analytical application. These feasibility of rapid multi elemental analysis are appealing proprieties for the in-situ analytical technique in geochemical investigation, exploration and environmental analysis. There remain still some limitations to be solved for LIBS to be applied in soil environment as an in-situ analytical technology. We would like to provide the basic principle related to the plasma formation and laser-induced breakdown of sample materials. In addition, the matrix effect, laser properties and the various factors affecting on the analytical signal of LIBS was dealt with to enhance understanding of LIBS through literature review. Ultimately, it was investigated the feasibility of LIBS application in soil environment monitoring by considering the basic idea to enhance the data quality of LIBS including the calibration method for the various effects on the analytical signal of LIBS.
Keywords
Heavy metal; In-situ analysis; LIBS; Soil; Matrix effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barbini, R., Colao, F., Fantoni, R., Pallucci, A. and Capitelli, F. (1999) Application of laser induced breakdson spectroscopy to the analysis of metals in soil. Appl. Phys. A69, p. 175-178   DOI
2 Brech, F. and Cross, L. (1962) Optical micromission simulated by ruby laser. Appl. Spectrosc. v. 16, p.59
3 Chaleard, C., Mauchein, P., Andre, N., Uebbing, J., Lacour, J.L. and Geertsen, C.(1997) Correction of matrix effects in quantitative elemental analsis with laser ablation optical emission spectrometry. J. Anal. At. Spectrom. v. 12, p. 183-188   DOI   ScienceOn
4 Cremers, D.A. and Radziemski, L.J. (1983) Detection of cholorine and fluoreine in ari by laser induced breakdown spectrometry. Anal. Chem. v.55, p. 1252-1256   DOI   ScienceOn
5 Harmon, R.S., DeLucia, F.C., McManus, C.E., McMillian, N.J., Jenkins, T.F., Walsh, M.E. and Miziolek, A. (2006) Laser induced breakdown spectroscopy-An emerging chemical sensor technology for real-time field-portable, geochemical, mineological, and environmental application. Appl. Geochem. v.21. p.730-747   DOI   ScienceOn
6 Hohreiter, V. and Hahn, D.W. (2005) Dual pulse laser induced breakdown spectroscopy: time-resolved transmission and spectral measurements. Spectrochim. Acta. Part B. 60, p. 968-974   DOI   ScienceOn
7 Hou, X. and Jones, B.T. (2000) Field instrumentation in atomic spectroscopy, Micro Chem J. v. 66, p. 115-145   DOI
8 Lee, Y.I., Sawan, S.P., Thiem, T.L., Teng, Y.Y. and Sneddon, J. (1992a) Interaction of a laser beam with metals II. Space resolved studies of laser ablated plasma emission. Appl. Spectrosc. v. 46, p. 436-441   DOI
9 Lee, Y.I., Thiem, T.L. and Kim, G.-H (1992b) Interaction of a laser beam with metals: III. The effect of a controlled atmosphere in laser-ablated plasma emission. Appl. Spectrosc. v. 46, p. 1597-1604   DOI
10 Palanco, S., Bacana, J.M. and Laserma, J.J. (2002) Open path laser induced plasma spectrometry for remote analytical measurements on solid surfaces, Spectrochim. Acta Part B 57, p. 591-599   DOI   ScienceOn
11 Vidal, F., Laville, S., Johnsotn, T.W., Barthelemy, O., Chaker, M., LeDrogff, B., Margot, J. and Sabsabi, M. (2001) Numercial simulation of ultrashort laser pulse ablation and plasma expansion in ambient air. Spectrochim. Acta. Part B56, p. 973-986   DOI   ScienceOn
12 Panne, U., Haisch, C., Clara, M. and Niessner, R. (1998) Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser induced plasma spectroscopy. Part I: normalization and plasma diagnostics. Spectrochim. Acta. Part B53, p. 1957-1968   DOI   ScienceOn
13 Radziemski, L.J., (1994) Review of selected analytical applications of laser plasmas and laser ablation. Microchem. J. v. 50, p. 218-234   DOI   ScienceOn
14 Radziemski, L.J., (2002) From laser to LIBS, the path of technology development, Spectrochim. Acta. Part B 57, p. 1109-1113   DOI   ScienceOn
15 Wachter, J. R. and Cremers, D.A. (1987) Determination of Uranium in Solution Vsing Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc., v. 41, p. 1042-1048   DOI   ScienceOn
16 Corsi, M., Cristoforetti, G., Hidalgo, M., Legnaioli, S., Palleschi, V., Salvetti, A., Tognoni, E. and Vallebona, C. (2006) Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Appl. Geochem. v. 21, p. 748-755   DOI   ScienceOn
17 Bulatove, V., Kransniker, R. and Schechlter, I. (1998) Study of Matrix Effects in Laser Plasma Spectroscopy by Combined Multifiber Spatial and Temporal Resolutions. Anal. Chem. v. 70, p. 5302-5311   DOI   ScienceOn
18 Jensen, L.C., Langford, S.C., Dickinson, J.T., Addleman, R.S. (1995) Mechanic studies of laser induced breakdown spectroscopy of model environmental samples. Spectrochim. Acta. Part B 50, p. 1501-1519   DOI   ScienceOn
19 Rossnwaser, S., Asimellis, G., Bromley, B., Hazlett, R., Martin, J., Pearce, T. and Zigler, A. (2001). Development of a method for automated quantitative analysis of ores using LIBS, Spectrochim Acta Part B56, p. 707-714   DOI   ScienceOn
20 Capitelli, M., Eletskii, A.V. and Capitelli, F. (2000) Non equilibrium and equilibrium problems in laser induced plasmas. Spectrochim. Acta. Part B55, p. 559-574   DOI   ScienceOn
21 Eppler, A.S., Cremers, D. A., Hickmott, D. D., Ferris, M. J. and Koskelo, A.C. (1996) Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy Appl. Spectrosc. v. 50, p. 1175-1181   DOI   ScienceOn
22 Ciucci, A., Palleschi, V. and Van de Stee, H.J.L. (1996) Trace pollutant analysis in soil by a time-resolvd laser induced breakdown spectroscopy technique, Appl. Phys, B63, p. 185-190   DOI
23 Capitelli, F., Colao, F., Provenzano, M. R., Fantoni, R., Brunetti, G. and Sensi, N. (2002) Determination of heavymetlas in soil by laser induced breakdown spectroscopy. Geoderma, v. 106, p. 46-62
24 Chan, W.T. and Russo, R.E. (1991) Study of laser material interactions using inductivley coupledpalsam atomic emission spectroscopy. Spectrochim. Acta. Part B46, p.1471-1486   DOI   ScienceOn
25 Wisbrun, R., Schechlter, I., Niessner, R. and Schroder, H. (1993) Laser-induced breakdown spectroscopy as a fast screening sensor for environmental analysis of trace amounts of heavy metals in soil. Anal. Methods Instrum. v. 1, p. 17-22
26 Gautier, C., Fichet, P., Menut, D., Lacour, J.-L., L'Hermite, D. and Dubessy, J. (2005) Quantification of the intensity enhancement for the double pulse laser induced breakdown spectroscopy, Spectrochim. Acta. Part B. 60, p. 265-276   DOI   ScienceOn
27 Barrete, L. and Turmel, S. (2001) On-line iron-ore slurry monitoring for real ime process control pf pellet making processes using laser induced breakdown spectroscopy: graphite vs. total carbon detection. Spectrochim. Acta. Part B56, p.715-723   DOI   ScienceOn
28 Wainner, R.T., Harmon, R.S., Miziol, A.W., McNesby, K.L. and French, P.D. (2001) Analysis of environmental lead contamination: Comparision of LIBS field and laboratory instruments. Spectrochimca Acta Part B 56, p. 777-793   DOI   ScienceOn
29 Theriault, G.A., Bodensteiner, S. and Liberman, S.H. (1998) A real time fiber optic LIBS probe for the in situ delinaeation of metals in soils. Field Analytical chemistry and technology. p. 2117-125
30 Wiggenhauser, H., Schaurich, D. and Wilsch, G. (1998) LIBS for non-destructive testing of element distributions on surfaces. NDT&E International, v. 31, p. 307-313   DOI   ScienceOn
31 Marqurardt, B.J., Goode, S.R. and Angel, S.M. (1996) In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Vsing a Fiber-Optic Probe. Anal. Chem. v.68, p. 977-981   DOI   ScienceOn
32 Todoli, J.-L. and Mermet, J.-M. (1998) Study of polymer ablation products obtained by ultraviolet laser ablation inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta. Part B 53, p. 1645-1656   DOI   ScienceOn
33 Tognoni, E., Palleschi, V., Corsi, M. and Cristoforetti, G. (2002) Quantitative micro analysis by laser induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta. Part B 57, p. 1115-1130   DOI   ScienceOn
34 Kim, D.E., Yoo, K.J., Park, H.K., Oh, K.J., Kim, D.W. (1997) Quantitative analysis of aluminum impurities in zinc alloy by laser induced breakdown spectroscopy. Appl. Spectrosc. v. 51, p. 22-29   DOI   ScienceOn
35 Xu, I., Bulatove, V., Gridin, V.V., and Schechlter, I (1997) Anal. Chem. v. 69, p. 2103-2108   DOI   ScienceOn
36 Arca, G., Ciucci, A., Palleschi, V., Rastelli, S. and Tognoni, E. (1997)Trace element analysis in water by the laser induced breakdown spectroscpy technique. Appl. Spectsoc. v. 51, p. 1102-1105   DOI   ScienceOn
37 Hilbk-Kortenbruck, F., Noll, R., Wintjens, P., Falk, H. and Becker, C. (2001) Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser induced fluorescence, Spectrochim. Acta. Part B 56, p. 933-945   DOI   ScienceOn
38 Yamamoto, K.Y., Cremers, D. A., Ferris, M. J., Foster, and Leeann E. (1996) Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument Applied Spectroscopy, v. 50, p. 222-233   DOI
39 Adrain, R. S. and Watson, J. (1984) Laser Microspectral Analysis: A Review of Principles and Applications. Appl. Phys. D17, p.1915-1940   DOI   ScienceOn
40 Martin, M.Z., Wullschleger, S.D., Garten, T.G. and Palumbo, A.V. (2003) Laser-Induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. App. Opt. v. 42, p. 2072-2077   DOI
41 Castle, B.C., Knight, A.K., Visser, K., Smith, B.W. and Winefordner, J.D. (1998b) Battery powered laser-induced plasma spectrometer for elemental determinations. J. Anal. At. Spectrom. v. 13, p. 589-595   DOI   ScienceOn
42 Cremers, D.A. and Radziemski, L.J. and Loree, T.R. (1984) Spectrochemical analysis of liquids using the laser spark. Appl. Spectrosc. 38, p. 721-729   DOI   ScienceOn
43 Radziemski, L.J., Loree, T.R., Cremers, D.A. and Hoffman, N.M. (1983) Time Resolved Laser-Induced Breakdown Spectrometry of Aerosols. Anal. Chem. v.55, p. 1246-1252   DOI   ScienceOn
44 Winefordner, J.D., Gornushkin, I.B., Pappas, D., Matveev, O.I. and Smith, B.W. (2000) Novel uses of lasers in atomic spectroscopy. v.15, p. 1161-1189   DOI   ScienceOn
45 Autin, M., Briand, A. and Mauchien, P. (1993) Characterization by emission spectrometry of a laser-produced plasma from a copper target in air at atmospheric pressure Spectrochim. Acta. Part B48, p. 851-862   DOI   ScienceOn
46 Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A. and Tognoni, E. (1999) New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy. Appl. Spectrosc. v. 53, p. 960-964   DOI
47 Salle, B., Cremers, D.A., Maurice, S., Wiens, R.C. and Fichet, P. (2005) Evaluation of compact spectrograph for in situ and stand off laser induce breakdown spectroscopy analysis of geological samples on Mars missions. Spectrochim. Acta Part B60, p. 805-815   DOI   ScienceOn
48 Yalcin, S., Crosley, D.R., Smith, G.P. and Faris, G.W. (1999) Influence of ambient conditions on the laser air spark. Applied. Physics B., v.68, p. 121-130   DOI
49 Martin, M.Z., Cheng, M.D. and Maretic, R.C. (1999) Aerosol measurement by laser induced plasma technique: a review. Aerosl Sci. Technol. v. 31, p. 409-421   DOI
50 Castel, B.C., Talabardo, K., Smith, B.W. and Winefordner, J.D. (1998a) Variables influencing the precision of laser induced breakdown spectroscopy measurement. Appl. Spectrosc. v. 52, p. 1067-1624
51 Cremers, D.A. and Radziemski, L.J. (1987) Laser spectroscopy and Its application, Marcel Dekker, New York, p. 351-415
52 Fisher, B.T., Johnsen, H.A., Buckley, S.G. and Hahn, D.W. (2001) Temporal gating for the optimization of laser induced breakdown spectroscopy detection and analysis of toxic metals. Appl. Spectrosc. v. 55, p. 1312-1319   DOI   ScienceOn
53 Radziemski, L.J., and Cremers, D.A. (1989) Laser induced plasma and applications. Marcel Dekker. New York
54 Wisbrun, R., Schechlter, I., Niessner, R., Schroder, H. and Kompa, K. L. (1994) Detector for trace elemental analysis of solid environmentla samples by laser plasma spectroscopy. Anal. Chem. v.66, p.2964-1975   DOI   ScienceOn
55 Piepmeier, E.H. (1986) Laser ablation for atomic spetrsocpy. In: Piepmeier, E.H. (Ed.) Analytical application of laser, Willy, New York, p. 627-669
56 Corsi, M., Palleschi, V., Salvetti, A., Tognoni, E. and Vallebona, C. (2000) Making LIBS quantitative: a critical review of the current approaches to the problem, Res. Adv. Appl. Spectrosc. v. 1, p. 41-46
57 Davis, C.M., Telle, H.H., Mongomery, D.J. and Corbett, R.E. (1995) Quantitative analysis using remote laser induced breakdown spectroscopy, Spectrochim. Acta. Part B 50, p. 1059-1075   DOI   ScienceOn
58 Pakhomov, A.V., Nichols, Wand Borysow, J. (1996) Laser induced breakdown spectroscopy for detection of Pb in concrete. Appl. spectrosc. v. 50, p. 880-884   DOI   ScienceOn
59 Gornushkin, I.B., Baker, S.A., Smith, B.W. and Winefordner, J.D. (1997) Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence. Spectrochim. Acta Part B 52. p. 1653-1662   DOI   ScienceOn
60 Multari, R.A., Foster, L.E., Cremers. D.A. and Ferris, M.J. (1996) Effect of sampling geometry on elemental emission in laser induced breakdown spectroscopy. Appl. Spectrosc. v. 50, p. 1483-1499   DOI   ScienceOn
61 Neuhauser, R.E., Panne, U., Niessner, R., Petrucci, G.A., Cavalli, P. and Omentetto, N(1997) On line and in situ detection of lead aerosols by plasma spectroscopy and laser excited atomic fluorescence spectroscopy. Anal. Chim. Acta. v. 346, p. 37-48   DOI   ScienceOn
62 Scaffidi, J., Pearman, W., Lawrence, M., Chance Carter, J., Colston, B.W. and Angel, S.M. (2004) Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy, Appl. Opt. v.43, p. 5243-5250   DOI
63 Schroeder, H., Schechter, I., Wisbrun, R. and Niessner, R. (1994) Eximer lasers: The tools, Fundamentals of their interaction with matter, Fields of application. Kluwer Academic publishers. p. 269-287