• Title/Summary/Keyword: Larson-Miller parameter

Search Result 71, Processing Time 0.023 seconds

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

A Study on the Variation of Mechanical Properties Due to Thermal Aging in 2.25Cr-1Mo Boiler Tube Steel (2.25Cr-1Mo 강의 열화와 기계적 성질변화에 관한 연구)

  • Jeong, Hee-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1372-1381
    • /
    • 1996
  • As recieved boiler tuve steel was aged artificially at $650^{\circ}C$ and$690^{\circ}C$ for various time duration to simulate the material deterioration which could be occurred during the operation of fossiol power plants. And the tensile tests, the microhardness tests and the characterization of carbides formed in the aging process were performed to asses the relationship between the mechanical properties and the effect of thermal aging. Furthernore, the amout of Mo-rich carbide were investigated by ondestructive method by noticing the fact that formation of Mo-rich carbide were investigated by ondestructive melthod by noticing the fact that formation of Mo-rich carbides($Mo_6C$) which stabilizes lastly affects the mechanical properties. It was known that the microhardness results of service exposed materials were similar to the ones which are aged at $650^{\circ}C$. The room temperature measurement showed small variation in the yield points and ultimate strength in materials aged at $650^{\circ}C$. Those properties at $540^{\circ}C$ showed the abrupt decrease compared with as received material even if short aging time. And it was found that $650^{\circ}C$ $690^{\circ}C$ aging cause different effects on mechanical properties, although the temperature time parameters(LMP;Larson-Miller parameter) are same. And it was concluded that the aigng at $650^{\circ}C$ is more appropriate to simulate the service exposed condition. Finally, the relationship between high temperature tensile properties and Ip values were established, which offers a potential way of reliability tests onthe power plant components.

A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test (소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구)

  • Lee, Song-In;Baek, Seoung-Se;Kwon, Il-Hyun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

Creep Damage and Hardness Properties for 9Cr Steel by SP-Creep Test Technique (SP-Creep 시험기법에 의한 9Cr강의 크리프 손상과 경도 특성)

  • Baek, Seung-Se;Lyu, Dae-Young;Kim, Jeong-Ki;Kwon, Il-Hyun;Chung, Se-Hee;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.105-110
    • /
    • 2001
  • It has recently been raised main issue how solve the problem of insufficient energy. One of the solution is to increase the thermal efficiency of power generation system. For the purpose of high efficiency, it is necessary to increase the steam temperature and pressure. So, the use of modified $9{\sim}12%Cr$ steel having superior creep rupture strength and oxidation resistance is required to endure such severe environment. The evaluation of creep properties of those heat resistance material is very important to secure the reliability of high temperature and pressure structural components. Since creep properties are determined by microstructural change such as carbide precipitation and coarsening, It is certain that there are some relationship between creep properties and hardness affected by microstructure. In this study, SP-Creep ruptured test for newly developed 9Cr steel being used as boiler valve material was performed, and creep properties of the material were evaluated. Also, hardness test were performed and hardness results were related to the creep properties such as LMP and creep strength to verify the availability of SP-Creep test as creep test method.

  • PDF

Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability (가역투자율에 의한 첨단 페라이트강의 잔여수명에 대한 비파괴평가)

  • Hong, Seung-Pyo;Ryu, Kwon-Sang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.

The Characteristics of Creep for Dispersion Strengthened Copper (분산강화 동합금의 Creep 특성)

  • Park, K.C.;Kim, G.H.;Mun, J.Y.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF