• Title/Summary/Keyword: Large-scale slope

Search Result 193, Processing Time 0.026 seconds

Monitoring the Hydrologic Water Quality Characteristics of Discharge from a Flat Upland Field (평지 전작 유출수의 수문·수질 특성 모니터링)

  • Park, Chanwoo;Oh, Chansung;Choi, Soon-Kun;Na, Chae-in;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.109-121
    • /
    • 2020
  • Converting the agricultural land-use of rice field to upland has been increasingly conducted as farmers encourages themselves to grow higher value-added crops on rice fields under the policy support. Comparing to rice field, Upland shows different characteristic of discharge due to the slope, scale, and shape of field and characteristics of rainfall event. In this study, we designed the experiment fields reflecting flat-upland characteristics with different land scale, and tried to collect the discharge and load data. Soybeans and corn were selected as target crops considering the possibility of large-scale cultivation and crop demand. The cultivation was conducted during the growth period in 2019 with 3 different field scales. Hence, we have collected the discharge data from 17 rainfall events and the load data for 8 rainfall events. As a result, the magnitude of rainfall events and the discharge duration were found to have a strong positive correlation and field discharge occurred during the period by 55% to 83% of rainfall duration. Besides we found other relationships and characteristics of rainfall event, discharge, and pollutant load and also pointed out that continuous monitoring and more data are required to derive statistically significant results. Compared with slope-field monitoring data obtained from the precedent research, the runoff ratio of the flat-fields was significantly lower than slope-fields. Overall the discharge in the slop and flat-fields shows appreciably different characteristics so that the related researches need to be further conducted to reasonably assess environmental impact of agricultural activities at flat-field.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.

Research about Application Possibility of Afforestation Reinforced Soil Steep Slope by Nonwoven Geotextile (부직포를 활용한 급경사 녹화보강토공법의 적용 가능성에 관한 연구)

  • Cho, Yong-Seong;Koo, Ho-Bon;Lee, Choon-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.239-245
    • /
    • 2006
  • The steep slopes have been increased of new roads, industrial site development and large scale residential development. The preservation administration and steep slope construction are currently investigated by many researchers in Korea. However, concrete retaining wall or reinforced soil (i.e. Block or Pannel) are being applied for the steep slope, which results in the front face form of the structure being limited. This research investigates the method that can make up afforestation environment-friendly circumstances during the construction of steep slope structure. It is considered that steep slope reinforced structure would be possible based on the monitoring results about earth pressure, horizontal displacement and consolidation quality generated during the construction of whole constructing reinforced structure. Also, there no problems in grassy surface, drainage, and deformation in spite of rainy season after construction period and until now. So that the seeding soil layer surface reinforced soil method could be adopt for steep slope reinforced structure and others.

Analysis of Rock Slope Stability for Natural Slope and Cut Slope of Gneiss Area in Andong, Korea (편마암지역 자연사면.절취사면의 안정성 분석 사례)

  • Kim, Man-Il;Bae, Du-Won;Kim, Jong-Tae;Chae, Byung-Gon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.289-297
    • /
    • 2007
  • Slope failure that is occurred by rainfall generates a lot of property damages and loss of lives. Slope stability management and reinforcement countermeasure can be attained through continuous monitoring about various slope types that adjoin in human's life for reducing slope failure from natural and artificial cut slope hazards. The study area is rock slope that is consisted of gneiss, and large scale joint set is ranging by fault activity. This rock mass is exposed during long period and has lithological weathering property of weathered rock or soft rock. In-situ investigation carried out after divide by natural slope and cut slope. As a result, the natural slope appeared to high possibility of planar failure and wedge failure in few joint points that main joint set is formed. On the other hand, slope failure conformation in cut slope was superior only wedge failure occurrence possibility in eight joint points. In result of numerical analysis using SLIDE 2D, the minimum safety factor was analyzed slope stability for cut slope relatively low than natural slope in this study.

A study for the stabilization of large scale rock slope designed in the fractured rock mass (파쇄암반에 설계된 대규모 사면의 안정화 고찰)

  • 홍예성;조태진;한공창
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.55-72
    • /
    • 1996
  • 암반사면의 안정성은 암반내에 발달된 불연속면의 기하학적 속성과 강도정수에 크게 영향을 받으며, 사면방향에 대한 불연속면들의 상대적인 방향성들은 구조적으로 발생 가능한 붕괴양상을 결정하게 된다. 불연속면을 따라 미끄러짐이 발생하는 암반사면의 불안정성 분석에는 결정론적인 해석(deterministic analysis)과 확률론적인 해석(probabilistic analysis)들을 포함하여 수많은 방법들이 이용되고 있다. (중략)

  • PDF

Detection of Trees with Pine Wilt Disease Using Object-based Classification Method

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.

Behavior of failure of agricultural reservoir embankment due to overtopping (월류에 의한 저수지 제체의 붕괴 거동)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.427-439
    • /
    • 2012
  • In this study, an experiment with large-scale model was performed according to raising embankment in order to investigate the behaviour of failure due to overtopping. The pore water pressure, earth pressure and settlement by high water level, a rapid drawdown and overtopping were compared and analyzed. Also, seepage analysis and slope stability analysis were performed for steady state and transient conditions. The pore water pressure and earth pressure for inclined core type showed high value at the base of the core, but they showed no infiltration by leakage. The pore water pressure and earth pressure by overtopping increased at the upstream slope and core, it is considered a useful data that can accurately estimate the possibility of failure of the reservoir. The behavior of failure due to overtopping was gradually enlarged towards the downstream slope from reservoir crest, and the inclined core after the raising embankment was influenced significantly to prevent the reservoir failure. The pore water pressure distribution for steady state and transient condition showed positive (+) pore water pressure on the upstream slope, it was gradually changed negative (-) pore water pressure on the downstream slope. The pore water pressure by overtopping showed a larger than the high water level at the downstream slope, it was likely to be the piping phenomenon because the hydraulic gradients showed largely at the inclined core and reservoir crest. The safety factor showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown.

Slope Stability Analysis Considering Reinforcing Effects of Geosynthetics (토목섬유의 보강효과를 고려한 사면안정해석)

  • Kim, Kyeong-Mo;Kim, Hong-Tack;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • Generally, to evaluate a slope stability of the geosynthetic reinforced soil slope, the modified version of limit equilibrium method can be used. In most cases, resisting effects of reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equation can be satisfied is proposed. A number of illustrative examples, including published load test of large-scale reinforced retaining wall and centrifuge model tests on the geotextile reinforced soil slopes, are also analyzed. As a result, it is shown that the newly suggested method produces a relatively accurate factor of safety.

  • PDF

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.

Studies on the Behaviour of fish Schools in the Main-net of a Large Scale Set-net using Scanning Sonar - II - The Behaviour of Large Schools of Sardine, Sardinops mwlanosticta in and around the Set-net - (소나 관찰에 의한 대형정치강내 어군행동의 연구 - II - 정치망내외에서 정어리대형군의 행동 -)

  • Kim, Mun-Kwan;Inoue, Yoshihiro;Park, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.8-14
    • /
    • 1995
  • The behaviour of large school of sardine Sardinops melanosticta in and around the set-net were analyzed from sonar image recordings. The survey was conducted at Kishihata set-net in Japan from January 29th to February 22th 1992. The results obtained are summarized as follows ; 1. When large schools of sardine moved along the outside of the set-net. the shape of the school gradually changed, that was the front part extended forward in the direction of movement and the rear part concentrated in the same direction such that the school retained its original shape. 2. When large school of sardine entered the main-net of the set-net. the school was decentralized directly to the slope-net. to the central part. and to the opposite side, and then the fish school was concentrated as it moved directly to the slope-net. 3. When the size of the front part of the fish school enlarged. the maximum recorded moving speeds were 176cm/sec and 277cm/sec for schools inside and outside the set-net, respectively.

  • PDF