• Title/Summary/Keyword: Large-scale network

Search Result 922, Processing Time 0.029 seconds

Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data (IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델)

  • Kim, Sam-Keun;Oh, Tack-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.310-318
    • /
    • 2018
  • Recently, the importance of big data analysis is increasing as a large amount of data is generated by various devices connected to the Internet with the advent of Internet of Things (IoT). Especially, it is necessary to analyze various large-scale IoT streaming sensor data generated in real time and provide various services through new meaningful prediction. This paper proposes a real-time indoor PM10 concentration prediction LSTM model based on streaming data generated from IoT sensor using AWS. We also construct a real-time indoor PM10 concentration prediction service based on the proposed model. Data used in the paper is streaming data collected from the PM10 IoT sensor for 24 hours. This time series data is converted into sequence data consisting of 30 consecutive values from time series data for use as input data of LSTM. The LSTM model is learned through a sliding window process of moving to the immediately adjacent dataset. In order to improve the performance of the model, incremental learning method is applied to the streaming data collected every 24 hours. The linear regression and recurrent neural networks (RNN) models are compared to evaluate the performance of LSTM model. Experimental results show that the proposed LSTM prediction model has 700% improvement over linear regression and 140% improvement over RNN model for its performance level.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis (Microarray와 Network 분석을 통한 병원균 및 스트레스 저항성 관련 주요 유전자의 대량 발굴)

  • Kim, Hyeongmin;Moon, Suyun;Lee, Jinsu;Bae, Wonsil;Won, Kyungho;Kim, Yoon-Kyeong;Kang, Kwon Kyoo;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis $4{\times}44K$ oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 down-regulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.

A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence (국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거)

  • Lim, Hyun Wook;Jeong, Seung Hwan;Lee, Hee Soo;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.71-85
    • /
    • 2021
  • The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.

The Meaning of Collective Relationships Becoming by Large-scale Interview Project - Focused on the media exhibition art <70mk> - (대규모 인터뷰 작업이 생성하는 집단적 관계성의 의미 - 미디어전시예술 <70mK>를 중심으로)

  • OH, Se Hyun
    • Trans-
    • /
    • v.7
    • /
    • pp.19-48
    • /
    • 2019
  • This study was described to examine the meaning of the media exhibition work <70mK>, which aims to capture the topography of the collective consciousness of the Korean people through large-scale interviews. <70mK> edits and organizes interview images of individual beings in mosaic-like layouts and forms, creating video exhibitions and holding exhibitions. The objects in the split frame show the continuity of differences that reveal their own thoughts and personalities. This is a synchronic and conscious collective typology in which the intrinsic nature of the individuals is embodied in a simultaneous and holistic image. Interview images reveal their own form as a actual being and convey the intrinsic nature of one's own as oral information. <70mK> constructs a new individualization by aesthetically structuring the forms and information of life individuals in the extension of a specific group. The beings in the frame are not communicating with each other and are looking straight ahead. it conveys to visitors their relationship and personality as the preindividual reality. It is the repetitive arrangement and composition of heterogeneity and difference that each individual shows, and is a chain operation that includes collective identity behind it. <70mK> constructs the direct images and sounds of individual interviewee, creating a new form of information transfer called Video Art Exhibition. This makes metaphors and perceptions of the meaning and process of transindividual relationships and the meaning of psychic individuation and collective individuation. This is an appropriate case to explain with modern technology and individualization of Gilbert Simondon thought together with the meaning of becoming and relation of individualization. The exhibition space constructed by <70mK> is an aesthetic methodology of the psychic and collective meaning and its relationship to a particular group of individuals through which they are connected. Simondon studied the meaning of the process of individualization and the meaning of becoming, and is a philosopher who positively considered the potential of modern technology. <70mK> is a new individual as structured and generated ethical reality mediated by modern technology mechanisms and network behaviors. It is an case of an aesthetic and practical methodology of how interviews function as 'transduction' in the process of individualization in which technology is cooperated. The direct images and sounds of <70mK> are systems in which the information of life individuals is carried, amplified, accumulated and transmitted. It is also a new individual as a psychic and collective landscape. It is a newly became exhibition art work through the multiple individualization, and is a representation of transindividual meanings and process. The media exhibition art of individualized metastable states leads to new relationships in which viewers perceive the same preindividual reality and feel affectivity. The exhibition space of <70mK> becomes a stage for preparing the actual possibility of the transindividual group beyond the representation of the semantic function.

  • PDF

Perception and Appraisal of Urban Park Users Using Text Mining of Google Maps Review - Cases of Seoul Forest, Boramae Park, Olympic Park - (구글맵리뷰 텍스트마이닝을 활용한 공원 이용자의 인식 및 평가 - 서울숲, 보라매공원, 올림픽공원을 대상으로 -)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • The study aims to grasp the perception and appraisal of urban park users through text analysis. This study used Google review data provided by Google Maps. Google Maps Review is an online review platform that provides information evaluating locations through social media and provides an understanding of locations from the perspective of general reviewers and regional guides who are registered as members of Google Maps. The study determined if the Google Maps Reviews were useful for extracting meaningful information about the user perceptions and appraisals for parks management plans. The study chose three urban parks in Seoul, South Korea; Seoul Forest, Boramae Park, and Olympic Park. Review data for each of these three parks were collected via web crawling using Python. Through text analysis, the keywords and network structure characteristics for each park were analyzed. The text was analyzed, as were park ratings, and the analysis compared the reviews of residents and foreign tourists. The common keywords found in the review comments for the three parks were "walking", "bicycle", "rest" and "picnic" for activities, "family", "child" and "dogs" for accompanying types, and "playground" and "walking trail" for park facilities. Looking at the characteristics of each park, Seoul Forest shows many outdoor activities based on nature, while the lack of parking spaces and congestion on weekends negatively impacted users. Boramae Park has the appearance of a city park, with various facilities providing numerous activities, but reviewers often cited the park's complexity and the negative aspects in terms of dog walking groups. At Olympic Park, large-scale complex facilities and cultural events were frequently mentioned, emphasizing its entertainment functions. Google Maps Review can function as useful data to identify parks' overall users' experiences and general feelings. Compared to data from other social media sites, Google Maps Review's data provides ratings and understanding factors, including user satisfaction and dissatisfaction.

AHP Analysis Research to Improve the Busan Port Ship Supplies Industry (부산항 선용품산업의 개선을 위한 AHP 분석 연구)

  • Ei Mon Khaing;Cho, Ye-hee;Ha, Myoung-shin
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.21-38
    • /
    • 2024
  • The current situation of ports and related industries is transitioning from quantitative growth in increased cargo volume and expansion of port facilities to qualitative growth in the role of ports through the creation of high value-added. Ports are now recognized as playing an important role in economic growth and development by generating high value-added, not just by increasing the amount of cargo and expanding port facilities. This study evaluated the importance of factors affecting the improvement of the Busan Port's marine equipment industry by using the Analytic Hierarchy Process(AHP) to derive the priority of improvement measures by factor and evaluate the importance of factors affecting the marine equipment industry. The factors that should be considered when selecting improvement measures for the marine equipment industry were selected as four factors: strengthening price competitiveness, increasing government and local government interest, strengthening promotion, and establishing a global network. The main sub-factors were composed of eight detailed evaluation factors by selecting two factors for each layer. The analysis was designed by dividing the factor hierarchy for selecting improvement measures for the marine equipment industry into three levels and creating survey questions for pairwise comparison. The priority of the analysis results using AHP showed that the factor with the highest priority was strengthening price competitiveness, followed by increasing government and local government interest, establishing a global network, and strengthening promotion. According to the analysis results for the second-level sub-factors, among the factors for strengthening price competitiveness, low distribution costs and storage costs were considered most important, followed by avoiding excessive competition among marine equipment companies. Among the factors for increasing government and local government interest, improving customs procedures and tariff refund procedures were considered most important, followed by strengthening incentives from the government and Busan City. Among the factors for establishing a global network, promoting large-scale marine equipment companies was considered most important, followed by actively participating in international marine equipment-related associations. Among the factors for strengthening promotion, active use of the Internet was considered most important, followed by holding domestic and international exhibitions. Based on this study, we hope to help activate Busan Port's market by enhancing its competitiveness through revitalizing its marine equipment industry, generating water traffic, and creating new value-added.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Performance Evaluation of LTE-VPN based Disaster Investigation System for Sharing Disaster Field Information (재난사고 정보공유를 위한 LTE-VPN기반 현장조사시스템 성능평가)

  • Kim, Seong Sam;Shin, Dong Yoon;Nho, Hyun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.602-609
    • /
    • 2020
  • In the event of a large-scale disaster such as an earthquake, typhoon, landslide, and building collapse, the disaster situation awareness and timely disaster information sharing play a key role in the disaster response and decision-making stages for disaster management, such as disaster site control and evacuation of residents. In this paper, an exited field investigation system of NDMI (National Disaster Management Research Institute) was enhanced with an LTE-VPN- based wireless communication system to provide an effective on-site response in an urgent disaster situation and share observation data or analysis information acquired at the disaster fields in real-time. The required performance of wireless communication for the disaster field investigation system was then analyzed and evaluated. The experimental result for field data transmission performance of an advanced wireless communication investigation system showed that the UDP transmission performance of at least 4.1Mbps is required to ensure a seamless video conference system between disaster sites. In addition, a wireless communication bandwidth of approximately 10 Mbps should be guaranteed to smoothly share the communication and field data between the survey equipment currently mounted on the survey vehicle.

A Study on the Characteristic Elements of the Modern Bookstore Space in the Concept of "Third Space" - Focused on Cases from 2010 Onwards - (제3의 공간 개념으로서의 현대서점 공간특성요소에 관한 연구 - 2010년 이후의 사례를 중심으로 -)

  • Wu, Li;Hong, Kwan-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.499-512
    • /
    • 2020
  • The development of the economy and network environment has a great impact on physical stores, and physical bookstores are gradually upgrading and transforming with the pace of the times. This study takes the modern bookstore under the concept of the third space as the research object. The purpose of it is to understand the needs of consumers for the space of the modern bookstores, explore the characteristics and development direction of them, which provides theoretical guidance for the follow-up development of the modern bookstore. Based on the concept of the third space and the theory of lifestyle shops and reorganizing theoretical investigation and prior research, the researcher extracts the characteristic elements of modern bookstores in line with the concept of the third space. Moreover, the research analyzes five bookstores opened in large-scale commercial facilities after 2010 as research cases. Through the analysis of the results, it shows that the modern bookstore is a multi-functional and compounded space which is gradually transformed from a single bookseller to a seller of selling lifestyle proposal. And through the analysis of big data to predict the changes in market consumption, we can find out the different needs of consumers, so as to carry out the targeted design of bookstore space and then improve the value of it. In the context of the co-development of economy and culture, the transformation of modern bookstores actually conforms to the change of consumer demand and realizes a virtuous circle.