DOI QR코드

DOI QR Code

Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis

Microarray와 Network 분석을 통한 병원균 및 스트레스 저항성 관련 주요 유전자의 대량 발굴

  • Kim, Hyeongmin (Department of Biology, Chungbuk National University) ;
  • Moon, Suyun (Department of Biology, Chungbuk National University) ;
  • Lee, Jinsu (Department of Biology, Chungbuk National University) ;
  • Bae, Wonsil (Department of Biology, Chungbuk National University) ;
  • Won, Kyungho (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Yoon-Kyeong (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kang, Kwon Kyoo (Department of Horticulture, Hankyong National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • 김형민 (충북대학교 자연과학대학 생물학과) ;
  • 문수윤 (충북대학교 자연과학대학 생물학과) ;
  • 이진수 (충북대학교 자연과학대학 생물학과) ;
  • 배원실 (충북대학교 자연과학대학 생물학과) ;
  • 원경호 (농촌진흥청 국립원예특작과학원 배연구소) ;
  • 김윤경 (농촌진흥청 국립원예특작과학원 배연구소) ;
  • 강권규 (국립한경대학교 원예학과) ;
  • 류호진 (충북대학교 자연과학대학 생물학과)
  • Received : 2016.08.16
  • Accepted : 2016.08.27
  • Published : 2016.09.30

Abstract

Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis $4{\times}44K$ oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 down-regulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.

브라시노스테로이드는 식물의 생장과 발육 과정에 있어서 중요한 역할을 담당 할 뿐 아니라 생물학적/ 비 생물학적 스트레스에 대한 복합 저항성을 보인다고 알려져 있다. 따라서 본 연구에서는 브라시노스테로이드와 광범위스트레스 내성을 연결하는 중요한 생물학적 네트워크를 이해하기 위해, Agilent Arabidopsis $4{\times}44K$ oligo chip을 이용하여 브라시노스테로이드 신호가 강화된 bes1-D 계통의 전 전사체 비교분석을 수행하였다. 그 결과 bes1-D 계통에서 DEGs (Differentially Expressed Genes)를 1,091 (562 up-regulated, 529 down-regulated) 개 선발하였다. 또한 선발된 유전자들의 GO 와 단백질 상호작용 네트워크 분석을 통해 대사, 발달, 스트레스, 면역, 방어 반응에 관련된 주요 브라시노스테로이드 신호전달과 연결된 스트레스 관련 유전자군을 분리하였다. 선발된 유전자중 NB-ARC와 FLS2는 bes1-D 계통이 야생형 En-2 계통에 비해 약 6배 정도의 발현량이 증가되었으며, TIR1, TSA1, OCP3 유전자등은 bes1-D 계통이 야생형 En-2 계통에 비해 발현이 감소되었다. 또한 브라시노스테로이드 활성형 계통이 야생형 식물체 계통에 비해 가뭄 스트레스 및 병원균에 대해 저항력이 향상되었다. 따라서 microarray 분석을 통한 유전자 간 발현 네트워크와 유전체 정보를 결합하여 대단위 주요 기능 유전자들을 동정할 수 있는 방법을 고안하여 실험에 사용하였다. 이를 통해 기능 획득 돌연변이 bes1-D가 식물들이 다양한 스트레스 환경에 적응할 수 있는 반응을 조절한다는 사실을 보여주고 있다.

Keywords

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT and others (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-9
  2. Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594-605 https://doi.org/10.1016/j.tplants.2012.05.012
  3. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131-6. https://doi.org/10.1016/j.nbt.2009.07.006
  4. Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151 https://doi.org/10.1186/1471-2229-10-151
  5. Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM and others (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13:177-89 https://doi.org/10.1016/j.devcel.2007.06.009
  6. Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol 10:436-41 https://doi.org/10.1016/j.pbi.2007.08.015
  7. Harnsomburana J, Green JM, Barb AS, Schaeffer M, Vincent L, Shyu CR (2011) Computable visually observed phenotype ontological framework for plants. BMC Bioinformatics 12:260 https://doi.org/10.1186/1471-2105-12-260
  8. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99:10185-90 https://doi.org/10.1073/pnas.152342599
  9. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353-64
  10. Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681-704 https://doi.org/10.1146/annurev.arplant.043008.092057
  11. Kutschera U, Wang ZY (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511-22 https://doi.org/10.1093/jxb/ers065
  12. Lee T, Kim H, Lee I (2015a) Network-assisted crop systems genetics: network inference and integrative analysis. Curr Opin Plant Biol 24:61-70 https://doi.org/10.1016/j.pbi.2015.02.001
  13. Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, Shim JE, Shim H, Kim H, Kim C and others (2015b) AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res 43:D996-1002 https://doi.org/10.1093/nar/gku1053
  14. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-38 https://doi.org/10.1016/S0092-8674(00)80357-8
  15. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213-22 https://doi.org/10.1016/S0092-8674(02)00812-7
  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  17. Oh E, Zhu JY, Ryu H, Hwang I, Wang ZY (2014) TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat Commun 5:4140
  18. Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335-60 https://doi.org/10.1146/annurev.arplant.56.032604.144103
  19. Ryu H, Cho H, Bae W, Hwang I (2014) Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 5:4138 https://doi.org/10.1038/ncomms5138
  20. Ryu H, Cho H, Kim K, Hwang I (2010a) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29:283-90 https://doi.org/10.1007/s10059-010-0035-x
  21. Ryu H, Kim K, Cho H, Hwang I (2010b) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29:291-6 https://doi.org/10.1007/s10059-010-0034-y
  22. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19:2749-62 https://doi.org/10.1105/tpc.107.053728
  23. Serin EA, Nijveen H, Hilhorst HW, Ligterink W (2016) Learning from Co-expression Networks: Possibilities and Challenges. Front Plant Sci 7:444
  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498-504 https://doi.org/10.1101/gr.1239303
  25. Shin SY, Chung H, Kim SY, Nam KH (2016) BRI1-EMS-suppressor 1 gain-of-function mutant shows higher susceptibility to necrotrophic fungal infection. Biochem Biophys Res Commun 470:864-9 https://doi.org/10.1016/j.bbrc.2016.01.128
  26. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800 https://doi.org/10.1371/journal.pone.0021800
  27. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842-57 https://doi.org/10.1105/tpc.111.094912
  28. Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701-24 https://doi.org/10.1146/annurev-genet-102209-163450
  29. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T and others (2002) Nuclearlocalized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505-13 https://doi.org/10.1016/S1534-5807(02)00153-3
  30. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181-91 https://doi.org/10.1016/S0092-8674(02)00721-3

Cited by

  1. Interplay between Brassinosteroid and ABA signaling during early seedling development vol.44, pp.3, 2017, https://doi.org/10.5010/JPB.2017.44.3.264