• Title/Summary/Keyword: Large-scale Image Processing

Search Result 118, Processing Time 0.023 seconds

Color Image Segmentation Using Characteristics of Superpixels (슈퍼픽셀특성을 이용한 칼라영상분할)

  • Lee, Jeong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.649-651
    • /
    • 2012
  • In this paper, a method of segmenting color image using characteristics of superpixels is proposed. A superpixel is consist of several pixels with same features such as luminance, color, textures etc. The superpixel can be used for image processing and analysis with large scale image to get high speed processing. A color image can be transformed to $La^*b^*$ feature space having good characteristics, and the superpixels are grouped by clustering and gradient-based algorithm.

  • PDF

A Study of Integral Image Hardware Design for Memory Size Efficiency (메모리 크기에 효율적인 적분영상 하드웨어 설계 연구)

  • Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.75-81
    • /
    • 2014
  • The integral image is the sum of input image pixel values. It is mainly used to speed up processing of a box filter operation, such as Haar-like features. However, large memory for integral image data can be an obstacle on an embedded hardware environment with limited memory resources. Therefore, an efficient method to store the integral image is necessary. In this paper, we propose a memory size reduction hardware design for integral image. The hardware design is used two methods. It is the new integral image memory and modulo calculation for reducing integral image data. The new integral image memory has additional calculation overhead, but it is not obstacle in hardware environment that parallel processing is possible. In the Xilinx Virtex5-LX330T targeted experimental result, integral image memory can be reduced by 50% on a $640{\times}480$ 8-bit gray-scale input image.

A Brief Survey into the Field of Automatic Image Dataset Generation through Web Scraping and Query Expansion

  • Bart Dikmans;Dongwann Kang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.602-613
    • /
    • 2023
  • High-quality image datasets are in high demand for various applications. With many online sources providing manually collected datasets, a persisting challenge is to fully automate the dataset collection process. In this study, we surveyed an automatic image dataset generation field through analyzing a collection of existing studies. Moreover, we examined fields that are closely related to automated dataset generation, such as query expansion, web scraping, and dataset quality. We assess how both noise and regional search engine differences can be addressed using an automated search query expansion focused on hypernyms, allowing for user-specific manual query expansion. Combining these aspects provides an outline of how a modern web scraping application can produce large-scale image datasets.

A Study on the Measurement of Crack Length of Pipe Specimen Using Image Processing (이미지 프로세싱을 이용한 실배관 시험편의 균열 길이 측정에 관한 연구)

  • Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung;Huh, Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.7-11
    • /
    • 2010
  • Difficulties associated with full-scale pipe tests are rather obvious. That is, it is not only difficult to perform them but also very expensive and it requires lots of experience. And the process of the fracture test for the pipe specimen is very difficult and complicated. Because the pipe specimen, the test jig and the test equipment are very large and heavy, it requires lots of costs and times. In this study, to easily perform the fracture toughness test for a pipe specimen, load line displacement data was obtained using the image processing method.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Weather Radar Image Gener ation Method Using Inter polation based on CUDA

  • Yang, Liu;Jang, Bong-Joo;Lim, Sanghun;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.473-482
    • /
    • 2015
  • Doppler weather radar is an important tool for meteorological research. Through several decades of development, Doppler weather radar has enormous progress in understanding, detection and warning of meso and micro scale weather system. It makes a significant contribution to weather forecast and weather disaster warning. But the large amount of data process limits the application of Doppler weather radar. This paper proposed for fast weather radar data processing based on CUDA. CDUA is a powerful platform for highly parallel programming developed by NVIDIA. Through running plenty of threads, radar data can be calculated at same time. In experiment, CUDA parallel program can significantly improve weather data processing time.

Fast Leaf Recognition and Retrieval Using Multi-Scale Angular Description Method

  • Xu, Guoqing;Zhang, Shouxiang
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2020
  • Recognizing plant species based on leaf images is challenging because of the large inter-class variation and inter-class similarities among different plant species. The effective extraction of leaf descriptors constitutes the most important problem in plant leaf recognition. In this paper, a multi-scale angular description method is proposed for fast and accurate leaf recognition and retrieval tasks. The proposed method uses a novel scale-generation rule to develop an angular description of leaf contours. It is parameter-free and can capture leaf features from coarse to fine at multiple scales. A fast Fourier transform is used to make the descriptor compact and is effective in matching samples. Both support vector machine and k-nearest neighbors are used to classify leaves. Leaf recognition and retrieval experiments were conducted on three challenging datasets, namely Swedish leaf, Flavia leaf, and ImageCLEF2012 leaf. The results are evaluated with the widely used standard metrics and compared with several state-of-the-art methods. The results and comparisons show that the proposed method not only requires a low computational time, but also achieves good recognition and retrieval accuracies on challenging datasets.

A Method for Detecting Concrete Cracks using Deep-Learning and Image Processing (딥러닝 및 영상처리 기술을 활용한 콘크리트 균열 검출 방법)

  • Jung, Seo-Young;Lee, Seul-Ki;Park, Chan-Il;Cho, Soo-Young;Yu, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.163-170
    • /
    • 2019
  • Most of the current crack investigation work consists of visual inspection using simple measuring equipment such as crack scale. These methods involve the subjection of the inspector, which may lead to differences in the inspection results prepared by the inspector, and may lead to a large number of measurement errors. So, this study proposes an image-based crack detection method to enhance objectivity and efficiency of concrete crack investigation. In this study, YOLOv2 was used to determine the presence of cracks in the image information to ensure the speed and accuracy of detection for real-time analysis. In addition, we extracted shapes of cracks and calculated quantitatively, such as width and length using various image processing techniques. The results of this study will be used as a basis for the development of image-based facility defect diagnosis automation system.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.