International Journal of Internet, Broadcasting and Communication
/
제16권2호
/
pp.119-126
/
2024
The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.
제조 클라우드는 여러 공장이 연결되어 단일 공장처럼 구성되어 사용자의 요구사항에 유연하게 대처할 수 있는 새로운 제조 패러다임이다. 이러한 기능을 제공하는 제조 클라우드 시스템은 클라우드 컴퓨팅, 사물인터넷, 인공지능과 같은 컴퓨팅 기술을 활용하여 분산되어 있는 제조 시설 간의 협업을 통한 유연 생산에서 안정성, 고신뢰성, 연동성 등을 제공하는 일종의 대규모 CPS이다. 제조 클라우드 CPS는 많은 수와 다양한 종류의 이기종 서브시스템들로 구성되어 있는데 이 때문에 서브시스템 간 연동, 데이터 교환, 시스템 통합 등에 문제가 발생할 수 있어 대규모의 제조 클라우드 CPS을 구성하는데 어려움을 겪고 있다. 본 논문에서는 이러한 어려움을 극복하기 위하여 제조 클라우드를 체계적으로 분석하고 분석 결과를 바탕으로 제조 클라우드 CPS를 효과적으로 지원할 수 있는 플랫폼 참조 모델을 제안한다. CPS 분석 방법론인 CPS 프레임워크를 활용하여 제조 클라우드 CPS의 기능적, 인간적, 신뢰성, 시간적, 데이터 및 구성의 측면에서 사용자 요구사항을 도출하고 이들을 분석하여 확장성, 구성성, 상호 작용성, 신뢰성, 시간성, 상호 운용성, 지능성의 영역에서 시스템 요구사항을 정의한다. 정의된 제조 클라우드 CPS 시스템 요구사항을 바탕으로 플랫폼을 구성하기 위하여 IoT 플랫폼 표준인 oneM2M의 요구사항에 매핑하고 oneM2M 구현물인 Mobius를 통하여 요구사항 지원성 검증 실험을 수행하였다. 수행 결과를 분석하여 현재 사물인터넷 플랫폼의 제조 클라우드 CPS 지원성을 확인하고 이를 확장하여 대규모 제조 클라우드 생산을 지원하는 플랫폼 참조 모델을 제안한다.
최근 센서 네트워크의 구축이 증가하면서 대규모의 센서 데이터를 효율적으로 관리하는 시스템이 요구되고 있다. 기존의 연구는 단일 서버 또는 그리드로 구축된 다수의 서버에 분산 데이터베이스 시스템을 이용하여 센서 데이터를 관리하므로 시스템 확장이 용이하지 않으며 시스템 구축 및 관리 비용이 많이 드는 단점이 있다. 본 논문에서는 저비용, 높은 확장성과 효율성을 지닌 클라우드 기반의 센서 데이터 관리 시스템을 제안한다. 제안된 시스템은 REST 기반의 웹서비스를 통해 제공되므로 다양한 응용프로그램과 연동이 가능하다.
최근 대규모 센서 네트워크의 구축이 증가하면서 대규모의 센서 데이터를 효율적으로 관리하는 시스템이 요구되고 있다. 본 논문에서는 저비용, 높은 확장성 그리고 고 효율성을 지닌 클라우드 기반의 센서 데이터 관리 시스템을 제안한다. 제안된 시스템에서는 센서 데이터는 클라우드 게이트웨이를 통해 클라우드로 전송되며 이때 이상상황 검출과 이벤트 처리가 수행된다. 클라우드로 전송된 센서 데이터는 분산 컬럼 지향 데이터 베이스인 하둡 HBase에 저장되며 맵리듀스 모델 기반의 질의처리 모듈을 통해 병렬 처리된다. 처리된 결과는 REST 기반의 웹서비스를 통해 제공되므로 다양한 플랫폼의 응용프로그램과 연동이 가능하다.
Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
International journal of advanced smart convergence
/
제5권1호
/
pp.1-7
/
2016
Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.
International journal of advanced smart convergence
/
제10권4호
/
pp.278-288
/
2021
Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.685-703
/
2024
Cloud computing provides each consumer with a large-scale computing tool. Different Cyber Attacks can potentially target cloud computing systems, as most cloud computing systems offer services to many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If strong security is needed, then the service of stronger security using more rules or patterns is provided, since it needs much more computing resources. A new way of security system is introduced in this work in cloud environments to the VM on account of resources allocated to customers are ease. The main spike of Fog computing is part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change the tremendous measurement of information because the endeavor apps are relocated to the cloud to keep the framework cost. The cloud server is devouring and changing a huge measure of information step by step to reduce complications. The Medical Data Health-Care (MDHC) records are stored in Cloud datacenters and Fog layer based on the guard intensity and the key is provoked for ingress the file. The monitoring center sustains the Activity Log, Risk Table, and Health Records. Cloud computing and Fog computing were combined in this paper to review data movement and safe information about MDHC.
International journal of advanced smart convergence
/
제9권3호
/
pp.253-259
/
2020
Most of today's large-scale cloud systems and enterprise data centers are distributing resources to improve scalability and resource utilization. NVMe-over-Fabric protocol allows submitting NVMe commands to a remote NVMe SSD through RDMA (Remote Direct Memory Access) network. It is attracting attention recently because it is possible to construct a disaggregation storage system with low latency through the protocol. However, the current I/O stack of NVMe-over-Fabric has an inefficient structure for maintaining compatibility with the traditional I/O stack. Therefore, in this paper, we propose a new mechanism to reduce I/O latency and CPU overhead by modifying I/O path of NVMe-over-Fabric to pass through legacy block layer. According to the performance evaluation results, the proposed mechanism is able to reduce the I/O latency and CPU overhead by up to 22% and 24% compared to the existing NVMe-over-Fabrics protocol, respectively.
Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
Journal of Platform Technology
/
제9권1호
/
pp.15-22
/
2021
In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권12호
/
pp.4759-4775
/
2015
The reduction of power consumption in large-scale datacenters is highly-dependent on the use of virtualization to consolidate multiple workloads. However, these consolidation strategies must also take into account additional important parameters such as performance, reliability, and profitability. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. In this paper, we put forward a data center monitoring strategy which dynamically alters its approach depending on the cloud system's current state. Results show that our proposed scheme outperformed strategies which only focus on a single metric such as SLA-Awareness and Energy Efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.