• Title/Summary/Keyword: Large-scale Cloud System

Search Result 60, Processing Time 0.022 seconds

Design of Distributed Cloud System for Managing large-scale Genomic Data

  • Seine Jang;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.119-126
    • /
    • 2024
  • The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.

제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델 (A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard)

  • 윤성진;김한진;신현엽;진회승;김원태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권2호
    • /
    • pp.41-56
    • /
    • 2019
  • 제조 클라우드는 여러 공장이 연결되어 단일 공장처럼 구성되어 사용자의 요구사항에 유연하게 대처할 수 있는 새로운 제조 패러다임이다. 이러한 기능을 제공하는 제조 클라우드 시스템은 클라우드 컴퓨팅, 사물인터넷, 인공지능과 같은 컴퓨팅 기술을 활용하여 분산되어 있는 제조 시설 간의 협업을 통한 유연 생산에서 안정성, 고신뢰성, 연동성 등을 제공하는 일종의 대규모 CPS이다. 제조 클라우드 CPS는 많은 수와 다양한 종류의 이기종 서브시스템들로 구성되어 있는데 이 때문에 서브시스템 간 연동, 데이터 교환, 시스템 통합 등에 문제가 발생할 수 있어 대규모의 제조 클라우드 CPS을 구성하는데 어려움을 겪고 있다. 본 논문에서는 이러한 어려움을 극복하기 위하여 제조 클라우드를 체계적으로 분석하고 분석 결과를 바탕으로 제조 클라우드 CPS를 효과적으로 지원할 수 있는 플랫폼 참조 모델을 제안한다. CPS 분석 방법론인 CPS 프레임워크를 활용하여 제조 클라우드 CPS의 기능적, 인간적, 신뢰성, 시간적, 데이터 및 구성의 측면에서 사용자 요구사항을 도출하고 이들을 분석하여 확장성, 구성성, 상호 작용성, 신뢰성, 시간성, 상호 운용성, 지능성의 영역에서 시스템 요구사항을 정의한다. 정의된 제조 클라우드 CPS 시스템 요구사항을 바탕으로 플랫폼을 구성하기 위하여 IoT 플랫폼 표준인 oneM2M의 요구사항에 매핑하고 oneM2M 구현물인 Mobius를 통하여 요구사항 지원성 검증 실험을 수행하였다. 수행 결과를 분석하여 현재 사물인터넷 플랫폼의 제조 클라우드 CPS 지원성을 확인하고 이를 확장하여 대규모 제조 클라우드 생산을 지원하는 플랫폼 참조 모델을 제안한다.

대규모 USN을 위한 클라우드기반 데이터 관리 시스템 설계 및 구현 (Design and Implementation of Cloud-based Data Management System for Large-scale USN)

  • 김경옥;정경진;박경욱;김종찬;장문석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.352-354
    • /
    • 2010
  • 최근 센서 네트워크의 구축이 증가하면서 대규모의 센서 데이터를 효율적으로 관리하는 시스템이 요구되고 있다. 기존의 연구는 단일 서버 또는 그리드로 구축된 다수의 서버에 분산 데이터베이스 시스템을 이용하여 센서 데이터를 관리하므로 시스템 확장이 용이하지 않으며 시스템 구축 및 관리 비용이 많이 드는 단점이 있다. 본 논문에서는 저비용, 높은 확장성과 효율성을 지닌 클라우드 기반의 센서 데이터 관리 시스템을 제안한다. 제안된 시스템은 REST 기반의 웹서비스를 통해 제공되므로 다양한 응용프로그램과 연동이 가능하다.

  • PDF

클라우드 기반 센서 데이터 관리 시스템 설계 및 구현 (Design and Implementation of Cloud-based Sensor Data Management System)

  • 박경욱;김경옥;반경진;김응곤
    • 한국전자통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.672-677
    • /
    • 2010
  • 최근 대규모 센서 네트워크의 구축이 증가하면서 대규모의 센서 데이터를 효율적으로 관리하는 시스템이 요구되고 있다. 본 논문에서는 저비용, 높은 확장성 그리고 고 효율성을 지닌 클라우드 기반의 센서 데이터 관리 시스템을 제안한다. 제안된 시스템에서는 센서 데이터는 클라우드 게이트웨이를 통해 클라우드로 전송되며 이때 이상상황 검출과 이벤트 처리가 수행된다. 클라우드로 전송된 센서 데이터는 분산 컬럼 지향 데이터 베이스인 하둡 HBase에 저장되며 맵리듀스 모델 기반의 질의처리 모듈을 통해 병렬 처리된다. 처리된 결과는 REST 기반의 웹서비스를 통해 제공되므로 다양한 플랫폼의 응용프로그램과 연동이 가능하다.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Cloud and Fog Computing Amalgamation for Data Agitation and Guard Intensification in Health Care Applications

  • L. Arulmozhiselvan;E. Uma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.685-703
    • /
    • 2024
  • Cloud computing provides each consumer with a large-scale computing tool. Different Cyber Attacks can potentially target cloud computing systems, as most cloud computing systems offer services to many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If strong security is needed, then the service of stronger security using more rules or patterns is provided, since it needs much more computing resources. A new way of security system is introduced in this work in cloud environments to the VM on account of resources allocated to customers are ease. The main spike of Fog computing is part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change the tremendous measurement of information because the endeavor apps are relocated to the cloud to keep the framework cost. The cloud server is devouring and changing a huge measure of information step by step to reduce complications. The Medical Data Health-Care (MDHC) records are stored in Cloud datacenters and Fog layer based on the guard intensity and the key is provoked for ingress the file. The monitoring center sustains the Activity Log, Risk Table, and Health Records. Cloud computing and Fog computing were combined in this paper to review data movement and safe information about MDHC.

Implementation of Light-weight I/O Stack for NVMe-over-Fabrics

  • Ahn, Sungyong
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.253-259
    • /
    • 2020
  • Most of today's large-scale cloud systems and enterprise data centers are distributing resources to improve scalability and resource utilization. NVMe-over-Fabric protocol allows submitting NVMe commands to a remote NVMe SSD through RDMA (Remote Direct Memory Access) network. It is attracting attention recently because it is possible to construct a disaggregation storage system with low latency through the protocol. However, the current I/O stack of NVMe-over-Fabric has an inefficient structure for maintaining compatibility with the traditional I/O stack. Therefore, in this paper, we propose a new mechanism to reduce I/O latency and CPU overhead by modifying I/O path of NVMe-over-Fabric to pass through legacy block layer. According to the performance evaluation results, the proposed mechanism is able to reduce the I/O latency and CPU overhead by up to 22% and 24% compared to the existing NVMe-over-Fabrics protocol, respectively.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • 제9권1호
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

CloudSwitch: A State-aware Monitoring Strategy Towards Energy-efficient and Performance-aware Cloud Data Centers

  • Elijorde, Frank;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4759-4775
    • /
    • 2015
  • The reduction of power consumption in large-scale datacenters is highly-dependent on the use of virtualization to consolidate multiple workloads. However, these consolidation strategies must also take into account additional important parameters such as performance, reliability, and profitability. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. In this paper, we put forward a data center monitoring strategy which dynamically alters its approach depending on the cloud system's current state. Results show that our proposed scheme outperformed strategies which only focus on a single metric such as SLA-Awareness and Energy Efficiency.