• Title/Summary/Keyword: Large-scale Cloud System

Search Result 60, Processing Time 0.028 seconds

Design of Distributed Cloud System for Managing large-scale Genomic Data

  • Seine Jang;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.119-126
    • /
    • 2024
  • The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

Design and Implementation of Cloud-based Data Management System for Large-scale USN (대규모 USN을 위한 클라우드기반 데이터 관리 시스템 설계 및 구현)

  • Kim, Kyong-Og;Jeong, Kyong-Jin;Park, Kyoung-Wook;Kim, Jong-Chan;Jang, Moon-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.352-354
    • /
    • 2010
  • Recently, the efficient management system for large-scale sensor data has been required due to the increasing deployment of large-scale sensor networks. In previous studies, sensor data was managed by distributed database system which built in a single server or a grid server. Thus, it has disadvantages such as low scalability, and high cost of building or managing the system. In this paper, we propose a cloud-based sensor data management system with low cast, high scalability, and efficiency. The proposed system can be work with the application of a variety of platforms, because processed results are provided through REST-based web service.

  • PDF

Design and Implementation of Cloud-based Sensor Data Management System (클라우드 기반 센서 데이터 관리 시스템 설계 및 구현)

  • Park, Kyoung-Wook;Kim, Kyong-Og;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.672-677
    • /
    • 2010
  • Recently, the efficient management system for large-scale sensor data has been required due to the increasing deployment of large-scale sensor networks. In this paper, we propose a cloud-based sensor data management system with low cast, high scalability, and efficiency. Sensor data in sensor networks are transmitted to the cloud through a cloud-gateway. At this point, outlier detection and event processing is performed. Transmitted sensor data are stored in the Hadoop HBase, distributed column-oriented database, and processed in parallel by query processing module designed as the MapReduce model. The proposed system can be work with the application of a variety of platforms, because processed results are provided through REST-based web service.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Cloud and Fog Computing Amalgamation for Data Agitation and Guard Intensification in Health Care Applications

  • L. Arulmozhiselvan;E. Uma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.685-703
    • /
    • 2024
  • Cloud computing provides each consumer with a large-scale computing tool. Different Cyber Attacks can potentially target cloud computing systems, as most cloud computing systems offer services to many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If strong security is needed, then the service of stronger security using more rules or patterns is provided, since it needs much more computing resources. A new way of security system is introduced in this work in cloud environments to the VM on account of resources allocated to customers are ease. The main spike of Fog computing is part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change the tremendous measurement of information because the endeavor apps are relocated to the cloud to keep the framework cost. The cloud server is devouring and changing a huge measure of information step by step to reduce complications. The Medical Data Health-Care (MDHC) records are stored in Cloud datacenters and Fog layer based on the guard intensity and the key is provoked for ingress the file. The monitoring center sustains the Activity Log, Risk Table, and Health Records. Cloud computing and Fog computing were combined in this paper to review data movement and safe information about MDHC.

Implementation of Light-weight I/O Stack for NVMe-over-Fabrics

  • Ahn, Sungyong
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2020
  • Most of today's large-scale cloud systems and enterprise data centers are distributing resources to improve scalability and resource utilization. NVMe-over-Fabric protocol allows submitting NVMe commands to a remote NVMe SSD through RDMA (Remote Direct Memory Access) network. It is attracting attention recently because it is possible to construct a disaggregation storage system with low latency through the protocol. However, the current I/O stack of NVMe-over-Fabric has an inefficient structure for maintaining compatibility with the traditional I/O stack. Therefore, in this paper, we propose a new mechanism to reduce I/O latency and CPU overhead by modifying I/O path of NVMe-over-Fabric to pass through legacy block layer. According to the performance evaluation results, the proposed mechanism is able to reduce the I/O latency and CPU overhead by up to 22% and 24% compared to the existing NVMe-over-Fabrics protocol, respectively.

REDUCING LATENCY IN SMART MANUFACTURING SERVICE SYSTEM USING EDGE COMPUTING

  • Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system

CloudSwitch: A State-aware Monitoring Strategy Towards Energy-efficient and Performance-aware Cloud Data Centers

  • Elijorde, Frank;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4759-4775
    • /
    • 2015
  • The reduction of power consumption in large-scale datacenters is highly-dependent on the use of virtualization to consolidate multiple workloads. However, these consolidation strategies must also take into account additional important parameters such as performance, reliability, and profitability. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. In this paper, we put forward a data center monitoring strategy which dynamically alters its approach depending on the cloud system's current state. Results show that our proposed scheme outperformed strategies which only focus on a single metric such as SLA-Awareness and Energy Efficiency.